Almost every 2-SAT function is unate

被引:0
|
作者
Peter Allen
机构
[1] London School of Economics,Department of Mathematics
来源
关键词
Partial Order; Colour Graph; Satisfying Assignment; Monotone Formula; Blue Edge;
D O I
暂无
中图分类号
学科分类号
摘要
Bollobás, Brightwell and Leader [2] showed that there are at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2^{\left( \begin{subarray}{l} n \\ 2 \end{subarray} \right) + o(n^2 )} $$ \end{document} 2-SAT functions on n variables, and conjectured that in fact the number of 2-SAT functions on n variables is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2^{\left( \begin{subarray}{l} n \\ 2 \end{subarray} \right) + n} (1 + o(1))$$ \end{document}. We prove their conjecture.
引用
收藏
页码:311 / 346
页数:35
相关论文
共 50 条
  • [1] Almost every 2-SAT function is unate
    Allen, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2007, 161 (01) : 311 - 346
  • [2] Almost 2-SAT is fixed-parameter tractable
    Razgon, Igor
    O'Sullivan, Barry
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2009, 75 (08) : 435 - 450
  • [3] Almost 2-SAT is fixed-parameter tractable (Extended Abstract)
    Razgon, Igor
    O'Sullivan, Barry
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 551 - 562
  • [4] On 2-SAT and renamable horn
    del Val, A
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 279 - 284
  • [5] Random 2-SAT and unsatisfiability
    Verhoeven, Y
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 119 - 123
  • [6] The number of 2-sat functions
    Béla Bollobás
    Graham R. Brightwell
    Imre Leader
    Israel Journal of Mathematics, 2003, 133 : 45 - 60
  • [7] A remark on random 2-SAT
    Goerdt, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 107 - 110
  • [8] On the Number of 2-SAT Functions
    Ilinca, L.
    Kahn, J.
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (05): : 749 - 764
  • [9] Random 2-SAT and unsatisfiability
    Verhoeven, Yann
    Information Processing Letters, 1999, 72 (03): : 119 - 123
  • [10] The number of 2-SAT functions
    Bollobás, B
    Brightwell, G
    Leader, I
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 133 (1) : 45 - 60