Quantum Spectral Methods for Differential Equations

被引:0
|
作者
Andrew M. Childs
Jin-Peng Liu
机构
[1] University of Maryland,Joint Center for Quantum Information and Computer Science
[2] University of Maryland,Department of Computer Science
[3] University of Maryland,Institute for Advanced Computer Studies
[4] University of Maryland,Applied Mathematics, Statistics, and Scientific Computation
来源
Communications in Mathematical Physics | 2020年 / 375卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recently developed quantum algorithms address computational challenges in numerical analysis by performing linear algebra in Hilbert space. Such algorithms can produce a quantum state proportional to the solution of a d-dimensional system of linear equations or linear differential equations with complexity poly(logd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{poly}\,}}(\log d)$$\end{document}. While several of these algorithms approximate the solution to within ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} with complexity poly(log(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{poly}\,}}(\log (1/\epsilon ))$$\end{document}, no such algorithm was previously known for differential equations with time-dependent coefficients. Here we develop a quantum algorithm for linear ordinary differential equations based on so-called spectral methods, an alternative to finite difference methods that approximates the solution globally. Using this approach, we give a quantum algorithm for time-dependent initial and boundary value problems with complexity poly(logd,log(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{poly}\,}}(\log d, \log (1/\epsilon ))$$\end{document}.
引用
收藏
页码:1427 / 1457
页数:30
相关论文
共 50 条
  • [1] Quantum Spectral Methods for Differential Equations
    Childs, Andrew M.
    Liu, Jin-Peng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1427 - 1457
  • [2] Spectral Methods for Substantial Fractional Differential Equations
    Can Huang
    Zhimin Zhang
    Qingshuo Song
    Journal of Scientific Computing, 2018, 74 : 1554 - 1574
  • [3] Spectral Methods for Solution of Differential and Functional Equations
    Varin, V. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (05) : 888 - 904
  • [4] Spectral Methods for Substantial Fractional Differential Equations
    Huang, Can
    Zhang, Zhimin
    Song, Qingshuo
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1554 - 1574
  • [5] Spectral Methods for Multiscale Stochastic Differential Equations
    Abdulle, A.
    Pavliotis, G. A.
    Vaes, U.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 720 - 761
  • [6] Spectral difference methods for solving differential equations
    Mazziotti, DA
    CHEMICAL PHYSICS LETTERS, 1999, 299 (05) : 473 - 480
  • [7] (Spectral) Chebyshev collocation methods for solving differential equations
    Amodio, Pierluigi
    Brugnano, Luigi
    Iavernaro, Felice
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1613 - 1638
  • [8] Spectral Deferred Correction Methods for Fractional Differential Equations
    Lv, Chunwan
    Azaiez, Mejdi
    Xu, Chuanju
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 729 - 751
  • [9] Spectral Deferred Correction Methods for Ordinary Differential Equations
    Alok Dutt
    Leslie Greengard
    Vladimir Rokhlin
    BIT Numerical Mathematics, 2000, 40 : 241 - 266
  • [10] SPECTRAL METHODS IN THE THEORY OF DIFFERENTIAL-FUNCTIONAL EQUATIONS
    DERFEL, GA
    MOLCHANOV, SA
    MATHEMATICAL NOTES, 1990, 47 (3-4) : 254 - 260