Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator

被引:0
|
作者
Karlheinz Gröchenig
机构
[1] Department of Mathematics,
[2] The University of Connecticut,undefined
[3] Storrs,undefined
[4] CT 06269-3009,undefined
关键词
Hilbert Space; Localization Property; Abstract Theory; Dual Frame; Gabor Frame;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new concept to describe the localization of frames. In our main result we show that the frame operator preserves this localization and that the dual frame possesses the same localization property. As an application we show that certain frames for Hilbert spaces extend automatically to Banach frames. Using this abstract theory, we derive new results on the construction of nonuniform Gabor frames and solve a problem about non-uniform sampling in shift-invariant spaces.
引用
收藏
页码:105 / 132
页数:27
相关论文
共 50 条
  • [1] Loealization of frames, Banach frames, and the invertibility of the frame operator
    Gröchenig, K
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (02) : 105 - 132
  • [2] OPERATOR BANACH FRAMES IN BANACH SPACES
    Shekhar, Chander
    JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 6 (03): : 17 - 26
  • [3] Operator Frames for Banach Spaces
    Li, Chun-Yan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 1 - 21
  • [4] Operator Frames for Banach Spaces
    Chun-Yan Li
    Complex Analysis and Operator Theory, 2012, 6 : 1 - 21
  • [5] Perturbations of Operator Banach frames in Banach spaces
    Shekhar, Chander
    Kaushik, Shiv Kumar
    ARMENIAN JOURNAL OF MATHEMATICS, 2016, 8 (02): : 104 - 119
  • [6] DUALITY OF OPERATOR FRAMES IN BANACH SPACES
    Li, Chunyan
    Fan, Qibin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (02): : 139 - 150
  • [7] (p, Y)-operator frames for a Banach space
    Cao, Huai-Xin
    Li, Lan
    Chen, Qing-Jiang
    Ji, Guo-Xing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 583 - 591
  • [8] Frames of subspaces and approximation of the inverse frame operator
    Khosravi, Amir
    Asgari, Mohammad Sadegh
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (03): : 907 - 920
  • [9] On Banach frames
    Jain, P. K.
    Kaushik, S. K.
    Vashisht, L. K.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2006, 37 (05): : 265 - 272
  • [10] Approximating the inverse frame operator from localized frames
    Song, Guohui
    Gelb, Anne
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 94 - 110