Generalizations of the Theorems of Pappus-Guldin in the Heisenberg groups

被引:0
|
作者
Yen-Chang Huang
机构
[1] National University of Tainan,Department of Applied Mathematics
来源
关键词
Pappus-Guldin Theorem; Sub-Riemannian manifolds; Pseudo-hermitian geometry; Primary: 53C17; Secondary: 53C65; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study areas (called p-areas) and volumes for parametric surfaces in the 3D-Heisenberg group H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_1$$\end{document}, which is considered as a flat model of pseudo-hermitian manifolds. We derive the formulas of p-areas and volumes for parametric surfaces in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_1$$\end{document} and show that the classical result of Pappus-Guldin theorems for surface areas and volumes hold if the surfaces satisfy some geometric properties. Some examples are also provided, including the surfaces with constant p-mean curvatures.
引用
收藏
页码:10374 / 10401
页数:27
相关论文
共 50 条