Exploring the ground state spectrum of γ-deformed N = 4 SYM

被引:0
|
作者
Fedor Levkovich-Maslyuk
Michelangelo Preti
机构
[1] Laboratoire de Physique de l’Ecole Normale Superieure,Department of Mathematics
[2] ENS,undefined
[3] Universite PSL,undefined
[4] CNRS,undefined
[5] Sorbonne Universite,undefined
[6] Universite de Paris,undefined
[7] Université Paris Saclay,undefined
[8] CNRS,undefined
[9] CEA,undefined
[10] Institut de physique théorique,undefined
[11] Nordita,undefined
[12] KTH Royal Institute of Technology and Stockholm University,undefined
[13] King’s College London,undefined
[14] Institute for Information Transmission Problems,undefined
关键词
AdS-CFT Correspondence; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the γ-deformation of the planar N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory which breaks all supersymmetries but is expected to preserve integrability of the model. We focus on the operator Tr (ϕ1ϕ1) built from two scalars, whose integrability description has been questioned before due to contributions from double-trace counterterms. We show that despite these subtle effects, the integrability-based Quantum Spectral Curve (QSC) framework works perfectly for this state and in particular reproduces the known 1-loop prediction. This resolves an earlier controversy concerning this operator and provides further evidence that the γ-deformed model is an integrable CFT at least in the planar limit. We use the QSC to compute the first 5 weak coupling orders of the anomalous dimension analytically, matching known results in the fishnet limit, and also compute it numerically all the way from weak to strong coupling. We also utilize this data to extract a new coefficient of the beta function of the double-trace operator couplings.
引用
收藏
相关论文
共 50 条
  • [1] Exploring the ground state spectrum of γ-deformed N=4 SYM
    Levkovich-Maslyuk, Fedor
    Preti, Michelangelo
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [2] Matrix model and β-deformed N=4 SYM
    Rossi, G. C.
    Siccardi, M.
    Stanev, Ya. S.
    Yoshida, K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (12):
  • [3] Gluon scattering in deformed N=4 SYM
    Oz, Yaron
    Theisen, Stefan
    Yankielowicz, Shimon
    PHYSICS LETTERS B, 2008, 662 (03) : 297 - 301
  • [4] A piece of cake: the ground-state energies in γi-deformed N=4 SYM theory at leading wrapping
    Fokken, Jan
    Sieg, Christoph
    Wilhelm, Matthias
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09): : 1 - 23
  • [5] Abelian reductions of deformed N=4 SYM
    Cardona, Carlos
    Lopez-Arcos, Cristhiam
    Nastase, Horatiu
    NUCLEAR PHYSICS B, 2015, 897 : 645 - 659
  • [6] New results in the deformed N=4 SYM theory
    Rossi, GC
    Sokatchev, E
    Stanev, YS
    NUCLEAR PHYSICS B, 2005, 729 (03) : 581 - 593
  • [7] Wrapping interactions in standard and β-deformed N=4 SYM
    Fiamberti, F.
    Santambrogio, A.
    Sieg, C.
    Zanon, D.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2009, 57 (5-7): : 552 - 557
  • [8] Two loop Kahler potential in β-deformed N=4 SYM theory
    Tyler, Simon J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):
  • [9] On the perturbative chiral ring for marginally deformed N=4 SYM theories
    Mauri, Andrea
    Penati, Silvia
    Pirrone, Marco
    Santambrogio, Alberto
    Zanon, Daniela
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):
  • [10] Finite-size effects in the superconformal β-deformed N=4 SYM
    Fiamberti, F.
    Santambrogio, A.
    Sieg, C.
    Zanon, D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08):