Multiplicity of solutions for quasilinear elliptic systems with singularity

被引:0
|
作者
Juan Li
Yu-xia Tong
机构
[1] Ningbo University,Department of Mathematics
[2] Heibei United University,College of Science
关键词
quasilinear elliptic system; singularity; critical growth; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of multiple solutions for the following quasilinear elliptic system: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\{ \begin{gathered} - \Delta _p u - \mu _1 \frac{{|u|^{p - 2} u}} {{|x|^p }} = \alpha _1 \frac{{u^{p*(t) - 2} }} {{|x|^t }}u + \beta _1 |v|^{\beta _2 } |u|^{\beta _1 - 2_u } ,x \in \Omega , \hfill \\ - \Delta _q v - \mu _2 \frac{{|v|^{q - 2} v}} {{|x|^q }} = \alpha _2 \frac{{v^{q*(s) - 2} }} {{|x|^s }}v + \beta _2 |u|^{\beta _1 } |v|^{\beta _2 - 2_u } ,x \in \Omega , \hfill \\ u(x) = v(x) = 0, \hfill \\ \end{gathered} \right. $\end{document} Multiplicity of solutions for the quasilinear problem is obtained via variational method.
引用
收藏
页码:277 / 286
页数:9
相关论文
共 50 条