Difference Operators for Partitions and Some Applications

被引:0
|
作者
Guo-Niu Han
Huan Xiong
机构
[1] I.R.M.A.,
[2] UMR 7501,undefined
[3] Université de Strasbourg et CNRS,undefined
来源
Annals of Combinatorics | 2018年 / 22卷
关键词
partition; hook length; content; standard Young tableau; difference operator; 05A15; 05A17; 05A19; 05E05; 05E10; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the Nekrasov-Okounkov formula on hook lengths, the first author conjectured that the Plancherel average of the 2k-th power sum of hook lengths of partitions with size n is always a polynomial of n for any k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \in \mathbb{N}}$$\end{document}. This conjecture was generalized and proved by Stanley (Ramanujan J. 23(1–3), 91–105 (2010)). In this paper, inspired by the work of Stanley and Olshanski on the differential poset of Young lattice, we study the properties of two kinds of difference operators D and D-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{-}}$$\end{document} defined on functions of partitions. Even though the calculations for higher orders of D are extremely complex, we prove that several wellknown families of functions of partitions are annihilated by a power of the difference operator D. As an application, our results lead to several generalizations of classic results on partitions, including the marked hook formula, Stanley Theorem, Okada-Panova hook length formula, and Fujii-Kanno-Moriyama-Okada content formula. We insist that the Okada constants Kr arise directly from the computation for a single partition λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document}, without the summation ranging over all partitions of size n.
引用
收藏
页码:317 / 346
页数:29
相关论文
共 50 条
  • [31] On Some Applications of a Special Integrodifferential Operators
    Saltan, Suna
    Ozel, Yasemin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [32] Some Applications of Weakly Picard Operators
    Rus, Ioan A.
    NINTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 7 - 10
  • [33] On some applications of certain integral operators
    Noor, Khalida Inayat
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 814 - 823
  • [34] Some applications of <bold>S</bold>-restricted set partitions
    Benyi, Beata
    Ramirez, Jose L.
    PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (01) : 110 - 127
  • [35] Difference of Composition Operators on Some Analytic Function Spaces
    Jun Mei FAN
    Yu Feng LU
    Yi Xin YANG
    Acta Mathematica Sinica,English Series, 2021, (09) : 1384 - 1400
  • [36] Entire functions sharing some values with their difference operators
    Jie Zhang
    LiangWen Liao
    Science China Mathematics, 2014, 57 : 2143 - 2152
  • [37] Compact operators on some Fibonacci difference sequence spaces
    Abdullah Alotaibi
    Mohammad Mursaleen
    Badriah AS Alamri
    Syed Abdul Mohiuddine
    Journal of Inequalities and Applications, 2015
  • [38] Compact operators on some Fibonacci difference sequence spaces
    Alotaibi, Abdullah
    Mursaleen, Mohammad
    Alamri, Badriah A. S.
    Mohiuddine, Syed Abdul
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [39] Entire functions sharing some values with their difference operators
    Zhang Jie
    Liao LiangWen
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2143 - 2152
  • [40] Entire functions sharing some values with their difference operators
    ZHANG Jie
    LIAO LiangWen
    ScienceChina(Mathematics), 2014, 57 (10) : 2143 - 2152