An application of artificial intelligence for rainfall-runoff modeling

被引:0
|
作者
Ali Aytek
M. Asce
Murat Alp
机构
[1] Gaziantep University,Civil Engineering Department, Hydraulics Division
[2] State Hydraulics Works,undefined
来源
关键词
Artificial intelligence; artificial neural networks; evolutionary computation; genetic programming; gene expression programming; rainfall; runoff;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes an application of two techniques of artificial intelligence (AI) for rainfall-runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two different ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods are compared with one EC method, Gene Expression Programming (GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydrometeorological data of three rainfall stations and one streamflow station for Juniata River Basin in Pennsylvania state of USA are taken into consideration in the model development. Statistical parameters such as average, standard deviation, coefficient of variation, skewness, minimum and maximum values, as well as criteria such as mean square error (MSE) and determination coefficient (R2) are used to measure the performance of the models. The results indicate that the proposed genetic programming (GP) formulation performs quite well compared to results obtained by ANNs and is quite practical for use. It is concluded from the results that GEP can be proposed as an alternative to ANN models.
引用
收藏
页码:145 / 155
页数:10
相关论文
共 50 条
  • [1] An application of artificial intelligence for rainfall-runoff modeling
    Aytek, Ali
    Asce, M.
    Alp, Murat
    JOURNAL OF EARTH SYSTEM SCIENCE, 2008, 117 (02) : 145 - 155
  • [2] Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
    Nourani, Vahid
    Kisi, Ozgur
    Komasi, Mehdi
    JOURNAL OF HYDROLOGY, 2011, 402 (1-2) : 41 - 59
  • [3] Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
    Faculty of Civil Eng., Univ. of Tabriz, 29 Bahman Ave., Tabriz, Iran
    不详
    不详
    J. Hydrol., 1-2 (41-59):
  • [4] Rainfall-Runoff Modeling using Computational Intelligence Techniques
    Kumar, Dhananjay
    Sarthi, P. Parth
    Ranjan, Prabhat
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 800 - 806
  • [5] RAINFALL-RUNOFF MODELING USING ARTIFICIAL NEURAL NETWORKS
    Tokar, A. Sezin
    Johnson, Peggy A.
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (03) : 232 - 239
  • [6] Modeling of the rainfall-runoff relationship with artificial neural network
    Valença, N
    Ludermir, T
    Valença, A
    HIS 2005: 5th International Conference on Hybrid Intelligent Systems, Proceedings, 2005, : 548 - 550
  • [7] Application of artificial neural network in rainfall-runoff model
    Li, Z.
    Deng, P.
    Dong, J.
    FROM HEADWATERS TO THE OCEAN: HYDROLOGICAL CHANGES AND WATERSHED MANAGEMENT, 2009, : 277 - 280
  • [8] Artificial neural network modeling of the rainfall-runoff extreme events
    Panagoulia, D.
    Maratos, N.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY, VOL A, ORAL PRESENTATIONS, 2003, : 682 - 689
  • [9] ARTIFICIAL NEURAL-NETWORK MODELING OF THE RAINFALL-RUNOFF PROCESS
    HSU, KL
    GUPTA, HV
    SOROOSHIAN, S
    WATER RESOURCES RESEARCH, 1995, 31 (10) : 2517 - 2530
  • [10] Modeling of the daily rainfall-runoff relationship with artificial neural network
    Rajurkar, MP
    Kothyari, UC
    Chaube, UC
    JOURNAL OF HYDROLOGY, 2004, 285 (1-4) : 96 - 113