Oxidation behavior of in situ synthesized (TiB + TiC)/Ti–6Al–4V composites from Ti–B4C–C and Ti–TiB2–TiC systems

被引:0
|
作者
Meng Yi
Xiangzhao Zhang
Chuanxin Ge
Guiwu Liu
Shunjian Xu
Demin Zhong
Guanjun Qiao
机构
[1] Xinyu University,School of Mechanical and Electrical Engineering
[2] Jiangsu University,School of Materials Science and Engineering
[3] Research Institute of Precision Casting Forging Industry,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The oxidation behavior of two percentages of TiB + TiC reinforced Ti–6Al–4V composites derived from Ti–B4C–C and Ti–TiB2–TiC systems was investigated at 873–1073 K for 320 h in air. The oxidation weight gain curves of the (TiB + TiC)/Ti–6Al–4V composites at 973 K basically obey parabolic law, while those at 873 and 1073 K mainly follow linear law and parabolic-linear law, respectively. The oxide layers of the composites are predominately found to be rutile TiO2, Al2O3, and the mixture of V2O3 and V2O5. The oxidation layers turn thinner with increasing the nominal volume fraction of reinforcements in the (TiB + TiC)/Ti–6Al–4V composites. Moreover, according to the calculation results of reaction index (n) and effective activation energy (Qeff) and the analyses of cross-sections of the oxidation layers, the oxidation resistance ability of the composites from Ti–TiB2–TiC system is higher than that from Ti–B4C–C system while employing the same sintering temperature and nominal volume fraction of reinforcement.
引用
收藏
页码:1762 / 1772
页数:10
相关论文
共 50 条
  • [1] Oxidation behavior of in situ synthesized (TiB + TiC)/Ti-6Al-4V composites from Ti-B4C-C and Ti-TiB2-TiC systems
    Yi, Meng
    Zhang, Xiangzhao
    Ge, Chuanxin
    Liu, Guiwu
    Xu, Shunjian
    Zhong, Demin
    Qiao, Guanjun
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (10) : 1762 - 1772
  • [2] Reaction synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system
    Binglin Zou
    Ping Shen
    Qichuan Jiang
    Journal of Materials Science, 2007, 42 : 9927 - 9933
  • [3] Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti-6Al-4V composites from Ti-B4C-C and Ti-TiB2-TiC systems
    Yi, Meng
    Zhang, Xiangzhao
    Liu, Guiwu
    Wang, Bo
    Shao, Haicheng
    Qiao, Guanjun
    MATERIALS CHARACTERIZATION, 2018, 140 : 281 - 289
  • [4] Fabrication of TiAl/B4C Composites from an Al-Ti-B4C System Reinforced by TiC, TiB2 In-situ
    Dong, Lihua
    Zhang, Weike
    Li, Jian
    Yin, Yansheng
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 477 - +
  • [5] Microstructure and tribological behavior of in situ synthesized (TiB+TiC)/Ti6Al4V (TiB/TiC=1/1) composites
    Zheng, Bowen
    Dong, Fuyu
    Yuan, Xiaoguang
    Huang, Hongjun
    Zhang, Yue
    Zuo, Xiaojiao
    Luo, Liangshun
    Wang, Liang
    Su, Yanqing
    Li, Weidong
    Liaw, Peter K.
    Wang, Xuan
    TRIBOLOGY INTERNATIONAL, 2020, 145
  • [6] Oxidation behavior of in situ synthesized (TiB plus TiC)/Ti-Al composites
    Qin, YeXia
    Zhang, Di
    Lu, WeiJie
    Pan, Wei
    MATERIALS LETTERS, 2006, 60 (19) : 2339 - 2345
  • [7] Microstructure and Mechanical Properties of a (TiB + TiB2 + TiC)/Ti–6Al–4V Composite Material Formed in the Process of in situ Synthesis in Selective Laser Melting
    Golyshev A.A.
    Malikov A.G.
    Fomin V.M.
    Filippov A.A.
    Orishich A.M.
    Journal of Engineering Physics and Thermophysics, 2022, 95 (7) : 1802 - 1808
  • [8] Microstructure and mechanical properties of in situ synthesized (TiB plus TiC)-reinforced Ti6Al4V composites produced by directed energy deposition of Ti and B4C powders
    Li, Ruifeng
    Yue, Hangyu
    Luo, Shixuan
    Zhang, Feng
    Sun, Bingbing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 864
  • [9] Microstructure and tensile properties of in situ synthesized (TiB+TiC)/Ti-6Al-4V composites
    Lu, Junqiang
    Lu, Weijie
    Liu, Yang
    Qin, Jining
    Zhang, Di
    COMPOSITE MATERIALS V, 2007, 351 : 201 - +
  • [10] Fabrication and characterization of Ti6Al4V/TiB2–TiC composites by powder metallurgy method
    M. Anandajothi
    S. Ramanathan
    V. Ananthi
    P. Narayanasamy
    Rare Metals, 2017, 36 : 806 - 811