Haar-Like Wavelets on Hierarchical Trees

被引:0
|
作者
Rick Archibald
Ben Whitney
机构
[1] Oak Ridge National Laboratory,Computer Science and Mathematics Division
[2] University of Wisconsin Eau Claire,Mathematics Department
来源
关键词
Unstructured data; Lossy compression; Euclidean metric approximation; 65T60;
D O I
暂无
中图分类号
学科分类号
摘要
Discrete wavelet methods, originally formulated in the setting of regularly sampled signals, can be adapted to data defined on a point cloud if some multiresolution structure is imposed on the cloud. A wide variety of hierarchical clustering algorithms can be used for this purpose, and the multiresolution structure obtained can be encoded by a hierarchical tree of subsets of the cloud. Prior work introduced the use of Haar-like bases defined with respect to such trees for approximation and learning tasks on unstructured data. This paper builds on that work in two directions. First, we present an algorithm for constructing Haar-like bases on general discrete hierarchical trees. Second, with an eye towards data compression, we present thresholding techniques for data defined on a point cloud with error controlled in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norm and in a Hölder-type norm. In a concluding trio of numerical examples, we apply our methods to compress a point cloud dataset, study the tightness of the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} error bound, and use thresholding to identify MNIST classifiers with good generalizability.
引用
收藏
相关论文
共 50 条
  • [1] Haar-Like Wavelets on Hierarchical Trees
    Archibald, Rick
    Whitney, Ben
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [2] Haar-like wavelets defined over tetrahedrical grids
    Boscardín, L
    Castro, L
    Castro, S
    XX INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY - PROCEEDINGS, 2000, : 117 - 125
  • [3] HAAR-LIKE FUNCTIONS
    SHORE, JE
    REPORT OF NRL PROGRESS, 1972, (DEC): : 15 - 16
  • [4] HIERARCHICAL CODEBOOK BACKGROUND MODEL USING HAAR-LIKE FEATURES
    Zhao, Pengxiang
    Zhao, Yanyun
    Cai, Anni
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2012), 2012, : 438 - 442
  • [5] A Survey of Haar-Like Feature Representation
    Oualla, Mohamed
    Sadiq, Abdelalim
    Mbarki, Samir
    2014 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2014, : 1101 - 1106
  • [6] Correlation of robust Haar-like feature
    Essannouni, L.
    Aboutajdine, D.
    ELECTRONICS LETTERS, 2011, 47 (17) : 961 - 961
  • [7] Skew Estimation Based on Haar-Like Features
    Liu, Bing
    Song, Li
    ADVANCES ON DIGITAL TELEVISION AND WIRELESS MULTIMEDIA COMMUNICATIONS, 2012, 331 : 22 - 28
  • [8] A Haar-like Construction for the Ornstein Uhlenbeck Process
    Thibaud Taillefumier
    Marcelo O. Magnasco
    Journal of Statistical Physics, 2008, 132 : 397 - 415
  • [9] Joint Haar-like features for face detection
    Mita, T
    Kaneko, T
    Hori, O
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1619 - 1626
  • [10] Parametric haar-like transforms in image denoising
    Minasyan, Susanna
    Astola, Jaakko
    Egiazarian, Karen
    Guevorkian, David
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 2629 - +