Forbidden Triples Containing a Complete Graph and a Complete Bipartite Graph of Small Order

被引:0
|
作者
Yoshimi Egawa
Michitaka Furuya
机构
[1] Tokyo University of Science,Department of Mathematical Information Science
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Forbidden subgraph; Forbidden triple; 3-Connected graph;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of connected graphs, G is said be F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} -free if G does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} as an induced subgraph. We let G3(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G} _{3}(\mathcal{F})}$$\end{document} denote the set of all 3-connected F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} -free graphs. This paper is concerned with sets F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of connected graphs such that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} contains no star, |F|=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mathcal{F}|=3}$$\end{document} and G3(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}_{3}(\mathcal{F})}$$\end{document} is finite. Among other results, we show that for a connected graph T( ≠ K1) which is not a star, G3({K4,K2,2,T})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}$$\end{document} is finite if and only if T is a path of order at most 6.
引用
收藏
页码:1149 / 1162
页数:13
相关论文
共 50 条
  • [1] Forbidden Triples Containing a Complete Graph and a Complete Bipartite Graph of Small Order
    Egawa, Yoshimi
    Furuya, Michitaka
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1149 - 1162
  • [2] Forbidden Triples Involving the Complete Bipartite Graph with Partite Sets Having Cardinalities Two and Three
    Egawa, Yoshimi
    Zhao, Zhixian
    ARS COMBINATORIA, 2021, 154 : 159 - 195
  • [3] ON LINE GRAPH OF COMPLETE BIPARTITE GRAPH
    HOFFMAN, AJ
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02): : 883 - &
  • [4] On Component Order Edge Connectivity Of a Complete Bipartite Graph
    Gross, Daniel
    Karmierczak, L. William
    Saccoman, John T.
    Suffel, Charles
    Suhartomo, Antonius
    ARS COMBINATORIA, 2013, 112 : 433 - 448
  • [5] Hamiltonian decompositions of the tensor product of a complete graph and a complete bipartite graph
    Manikandan, R. S.
    Paulraja, P.
    ARS COMBINATORIA, 2006, 80 : 33 - 44
  • [6] ON THICKNESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    MOON, JW
    HARARY, F
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (01): : 1 - &
  • [7] COARSENESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    GUY, RK
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1086 - &
  • [8] Multidesigns of complete graphs for graph-triples of order 6
    Cusack, Charles A.
    Edwards, Stephanie P.
    Parker, Darren B.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 94 : 177 - 203
  • [10] Complete bipartite graph is a totally irregular total graph
    Tilukay, Meilin, I
    Taihuttu, Pranaya D. M.
    Salman, A. N. M.
    Rumlawang, Francis Y.
    Leleury, Zeth A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 387 - 395