Cross-Domain Gated Learning for Domain Generalization

被引:0
|
作者
Dapeng Du
Jiawei Chen
Yuexiang Li
Kai Ma
Gangshan Wu
Yefeng Zheng
Limin Wang
机构
[1] Nanjing University,State Key Laboratory for Novel Software Technology
[2] Tencent Jarvis Lab,undefined
来源
关键词
Domain generalization; Representation learning; Dropout; Information bottleneck;
D O I
暂无
中图分类号
学科分类号
摘要
Domain generalization aims to improve the generalization capacity of a model by leveraging useful information from the multi-domain data. However, learning an effective feature representation from such multi-domain data is challenging, due to the domain shift problem. In this paper, we propose an information gating strategy, termed cross-domain gating (CDG), to address this problem. Specifically, we try to distill the domain-invariant feature by adaptively muting the domain-related activations in the feature maps. This feature distillation process prevents the network from overfitting to the domain-related detailed information, and thereby improves the generalization ability of learned feature representation. Extensive experiments are conducted on three public datasets. The experimental results show that the proposed CDG training strategy can excellently enforce the network to exploit the intrinsic features of objects from the multi-domain data, and achieve a new state-of-the-art domain generalization performance on these benchmarks.
引用
收藏
页码:2842 / 2857
页数:15
相关论文
共 50 条
  • [1] Cross-Domain Gated Learning for Domain Generalization
    Du, Dapeng
    Chen, Jiawei
    Li, Yuexiang
    Ma, Kai
    Wu, Gangshan
    Zheng, Yefeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2842 - 2857
  • [2] Ladder Curriculum Learning for Domain Generalization in Cross-Domain Classification
    Wang, Xiaoshun
    Luo, Sibei
    Gao, Yiming
    IEEE ACCESS, 2024, 12 : 95356 - 95367
  • [3] A Theory of Relation Learning and Cross-Domain Generalization
    Doumas, Leonidas A. A.
    Puebla, Guillermo
    Martin, Andrea E.
    Hummel, John E.
    PSYCHOLOGICAL REVIEW, 2022, 129 (05) : 999 - 1041
  • [4] Cross-domain Ensemble Distillation for Domain Generalization
    Lee, Kyungmoon
    Kim, Sungyeon
    Kwak, Suha
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 1 - 20
  • [5] Cross-Domain Feature Augmentation for Domain Generalization
    Liu, Yingnan
    Zou, Yingtian
    Qiao, Rui
    Liu, Fusheng
    Lee, Mong Li
    Hsu, Wynne
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 1146 - 1154
  • [6] Constrained Maximum Cross-Domain Likelihood for Domain Generalization
    Lin, Jianxin
    Tang, Yongqiang
    Wang, Junping
    Zhang, Wensheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [7] Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization
    Yue, Fengyu
    Wang, Yong
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1826 - 1832
  • [8] Discriminative adversarial domain generalization with meta-learning based cross-domain validation
    Chen, Keyu
    Zhuang, Di
    Chang, J. Morris
    NEUROCOMPUTING, 2022, 467 : 418 - 426
  • [9] Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift
    Wang, Yu
    Gao, Jie
    Wang, Wei
    Yang, Xu
    Du, Jinsong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212
  • [10] Cross-Domain Generalization of Neural Constituency Parsers
    Fried, Daniel
    Kitaev, Nikita
    Klein, Dan
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 323 - 330