In this paper, we consider the existence of weak renormalized solutions for the steady compressible flow of nematic liquid crystals in a 3-D bounded domain with no-slip boundary condition. By using a three-level approximation scheme, we establish the existence of weak renormalized solutions under the hypothesis γ>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma >1$$\end{document} for the adiabatic constant.
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Tan, Zhong
Xu, Qiuju
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 401131, Peoples R ChinaChongqing Normal Univ, Sch Math Sci, Chongqing 401131, Peoples R China
Xu, Qiuju
Tan, Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen, Peoples R ChinaChongqing Normal Univ, Sch Math Sci, Chongqing 401131, Peoples R China