Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system

被引:0
|
作者
Zhong-Zhou Lan
Jing-Jing Su
机构
[1] Inner Mongolia University of Finance and Economics,School of Computer Information Management
[2] Beijing University of Aeronautics and Astronautics,Ministry
来源
Nonlinear Dynamics | 2019年 / 96卷
关键词
Geophysical flows; Non-autonomous generalized ; system; Solitary and rogue waves; Controllable backgrounds;
D O I
暂无
中图分类号
学科分类号
摘要
Investigated in this paper is a non-autonomous generalized AB system, which is used to describe certain baroclinic instability processes in the geophysical flows. We discover that the two short waves and mean flow can evolve in the forms of the multi-rogue waves on the condition that the nonlinearity effect σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is positive. Via the Darboux and generalized Darboux transformations, we obtain the first- and second-order rogue waves as well as the algorithm to derive the Nth-order rogue waves. It is revealed that the perturbation function δ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (t)$$\end{document} has no effect on the two short waves while affects the mean flow by changing its evolution background. When σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is negative, those rogue waves turn to be singular. In addition, we find that the two short waves and mean flow can also appear as the solitary waves, and they perform as the “bright” solitons under σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma >0$$\end{document} while perform as the “dark” solitons under σ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma <0$$\end{document}. With the Hirota method, introducing the auxiliary function α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)$$\end{document}, we derive the first- and second-order bright and dark solitary waves. Both solitary wave velocities are related to δ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (t)$$\end{document} and α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)$$\end{document}. Besides, δ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (t)$$\end{document} and α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)$$\end{document} have no effect on the amplitudes of the two short waves but bring about controllable backgrounds and deformations of the solitary waves for the mean flow.
引用
收藏
页码:2535 / 2546
页数:11
相关论文
共 50 条
  • [1] Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system
    Lan, Zhong-Zhou
    Su, Jing-Jing
    NONLINEAR DYNAMICS, 2019, 96 (04) : 2535 - 2546
  • [2] On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves
    Wu, Xi-Hu
    Gao, Yi-Tian
    Yu, Xin
    Liu, Fei-Yan
    WAVE MOTION, 2023, 122
  • [3] Modulation instability and two types of non-autonomous rogue waves for the variable-coefficient AB system in fluid mechanics and nonlinear optics
    Wang, Lei
    Qi, Feng-Hua
    Tang, Bing
    Shi, Yu-Ying
    MODERN PHYSICS LETTERS B, 2016, 30 (01):
  • [4] The solitary waves, breather waves and rogue waves for a generalized nonlinear equation
    Wang, Hui
    Tian, Shou-Fu
    Zhang, Tian-Tian
    Chen, Yi
    MODERN PHYSICS LETTERS B, 2019, 33 (29):
  • [5] General rogue waves in the AB system
    Wang, Xiu-Bin
    APPLIED MATHEMATICS LETTERS, 2023, 144
  • [6] A Generalized Non-Autonomous SIRVS Model
    Silva, Cesar M.
    Pereira, Edgar
    da Silva, Jacques A. L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 583 - +
  • [7] Rogue waves of the AB system on the periodic background
    Sun, Haiying
    Zhaqilao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (28):
  • [8] GENERALIZED SYNCHRONIZATION IN A SYSTEM OF SEVERAL NON-AUTONOMOUS OSCILLATORS COUPLED BY A MEDIUM
    Martins, Rogerio
    Marais, Goncalo
    KYBERNETIKA, 2015, 51 (02) : 347 - 373
  • [9] Modulation instability and modulated waves patterns of the generalized non-autonomous nonlinear Schrodinger equation
    Inc, Mustafa
    Alqahtani, Rubayyi T.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [10] A coupled "AB" system: Rogue waves and modulation instabilities
    Wu, C. F.
    Grimshaw, R. H. J.
    Chow, K. W.
    Chan, H. N.
    CHAOS, 2015, 25 (10)