Quivers with relations for symmetrizable Cartan matrices IV: crystal graphs and semicanonical functions

被引:0
|
作者
Christof Geiss
Bernard Leclerc
Jan Schröer
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] LMNO,CNRS, UMR 6139
[3] Univ. de Caen,Mathematisches Institut
[4] Universität Bonn,undefined
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Primary 16G20; Secondary 14M99; 17B67;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize Lusztig’s nilpotent varieties, and Kashiwara and Saito’s geometric construction of crystal graphs from the symmetric to the symmetrizable case. We also construct semicanonical functions in the convolution algebras of generalized preprojective algebras. Conjecturally these functions yield semicanonical bases of the enveloping algebras of the positive part of symmetrizable Kac–Moody algebras.
引用
收藏
页码:3283 / 3348
页数:65
相关论文
共 6 条
  • [1] Quivers with relations for symmetrizable Cartan matrices IV: crystal graphs and semicanonical functions
    Geiss, Christof
    Leclerc, Bernard
    Schroer, Jan
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3283 - 3348
  • [2] Quivers with relations for symmetrizable Cartan matrices I: Foundations
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    INVENTIONES MATHEMATICAE, 2017, 209 (01) : 61 - 158
  • [3] Quivers with relations for symmetrizable Cartan matrices I: Foundations
    Christof Geiss
    Bernard Leclerc
    Jan Schröer
    Inventiones mathematicae, 2017, 209 : 61 - 158
  • [4] Quivers with Relations for Symmetrizable Cartan Matrices II: Change of Symmetrizers
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (09) : 2866 - 2898
  • [5] QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES III: CONVOLUTION ALGEBRAS
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    REPRESENTATION THEORY, 2016, 20 : 375 - 413
  • [6] Quivers with relations for symmetrizable Cartan matrices V: Caldero-Chapoton formulas
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 125 - 148