Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way

被引:0
|
作者
Ai-Jun Ding
Gui-Sheng Wu
Bin Tang
Xuechuan Hong
Michael X. Zhu
Huai-Rong Luo
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany
[2] University of Chinese Academy of Sciences,School of Pharmacy
[3] Southwest Medical University,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery
[4] Wuhan University School of Pharmaceutical Sciences,Department of Integrative Biology and Pharmacology
[5] University of Texas Health Science Center at Houston,undefined
来源
关键词
Aging; Benzimidazole derivative M084; Lifespan;
D O I
暂无
中图分类号
学科分类号
摘要
With the growth of aging population, there is increasing demand to develop strategy to improve the aging process and aging-related diseases. Benzimidazole and its derivatives are crucial heterocyclic backbone of many drugs and compounds with diverse therapeutic applications, including alleviation of aging-related diseases. Here, we investigate if the benzimidazole derivative n-butyl-[1H]-benzimidazol-2-amine (M084), a novel inhibitor of TRPC4 and TRPC5 channels and antidepressant, could affect the lifespan of Caenorhabditis elegans (C. elegans). Our results showed that M084 could extend the lifespan of C. elegans, delay age-related decline of phenotypes, and improve stress resistance. M084 could not extend the lifespan of the loss-of-function mutants of daf-16, daf-2, pdk-1, aak-2, clk-1, isp-1, sir-2.1, and skn-1. M084 could decrease the ATP level and increase the gene expression of mitochondrial unfolded protein response factors. Thus, M084 might inhibit the mitochondrial respiration, activate mitochondrial unfolded protein response and AMPK, recruite SIR-2.1 and SKN-1, and finally through the transcription factor DAF-16, delay the aging process of C. elegans. Our findings reveal the new pharmaceutical potential of benzimidazole derivatives and provide clue for developing novel anti-aging agents.
引用
收藏
页码:101 / 109
页数:8
相关论文
共 50 条
  • [1] Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way
    Ding, Ai-Jun
    Wu, Gui-Sheng
    Tang, Bin
    Hong, Xuechuan
    Zhu, Michael X.
    Luo, Huai-Rong
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2017, 426 (1-2) : 101 - 109
  • [2] Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16
    Shen, Peiyi
    Yue, Yiren
    Sun, Quancai
    Kasireddy, Nandita
    Kim, Kee-Hong
    Park, Yeonhwa
    BIOFACTORS, 2017, 43 (03) : 379 - 387
  • [3] Tectochrysin increases stress resistance and extends the lifespan of Caenorhabditis elegans via FOXO/DAF-16
    Lu, Min
    Tan, Lin
    Zhou, Xiao-Gang
    Yang, Zhong-Lin
    Zhu, Qing
    Chen, Jian-Ning
    Luo, Huai-Rong
    Wu, Gui-Sheng
    BIOGERONTOLOGY, 2020, 21 (05) : 669 - 682
  • [4] Tectochrysin increases stress resistance and extends the lifespan of Caenorhabditis elegans via FOXO/DAF-16
    Min Lu
    Lin Tan
    Xiao-Gang Zhou
    Zhong-Lin Yang
    Qing Zhu
    Jian-Ning Chen
    Huai-Rong Luo
    Gui-Sheng Wu
    Biogerontology, 2020, 21 : 669 - 682
  • [5] Anoectochilus roxburghii Extract Extends the Lifespan of Caenorhabditis elegans through Activating the daf-16/FoxO Pathway
    Xu, Peng
    Wang, Jianfeng
    Wang, Junyi
    Hu, Xiaoxiao
    Wang, Wei
    Lu, Shengmin
    Sheng, Yingkun
    ANTIOXIDANTS, 2024, 13 (08)
  • [6] Liangyi Gao extends lifespan and exerts an antiaging effect in Caenorhabditis elegans by modulating DAF-16/FOXO
    Zeng, Liling
    Sun, Chen
    Pei, Zhong
    Yun, Tianchan
    Fan, Shaoyi
    Long, Simei
    Wu, Tengteng
    Chen, Ziwen
    Yang, Zhimin
    Xu, Fuping
    BIOGERONTOLOGY, 2019, 20 (05) : 665 - 676
  • [7] Liangyi Gao extends lifespan and exerts an antiaging effect in Caenorhabditis elegans by modulating DAF-16/FOXO
    Liling Zeng
    Chen Sun
    Zhong Pei
    Tianchan Yun
    Shaoyi Fan
    Simei Long
    Tengteng Wu
    Ziwen Chen
    Zhimin Yang
    Fuping Xu
    Biogerontology, 2019, 20 : 665 - 676
  • [8] Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway
    Wan, Qin-Li
    Zheng, Shan-Qing
    Wu, Gui-Sheng
    Luo, Huai-Rong
    EXPERIMENTAL GERONTOLOGY, 2013, 48 (05) : 499 - 506
  • [9] CAMKII and Calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16
    Tao, Li
    Xie, Qi
    Ding, Yue-He
    Li, Shang-Tong
    Peng, Shengyi
    Zhang, Yan-Ping
    Tan, Dan
    Yuan, Zengqiang
    Dong, Meng-Qiu
    ELIFE, 2013, 2
  • [10] Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16
    Wu, Jing-Shan
    Lin, Chun-Guo
    Jin, Chang-Long
    Zhou, Yan-Xia
    Li, Ying-Xiu
    MARINE DRUGS, 2023, 21 (01)