Univalent functions;
Subordination;
Starlike and convex functions;
Domain bounded by hyperbola;
30C45;
30C80;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider a family of analytic and normalized functions with the property that zf′(z)/f(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$zf'(z)/f(z)$\end{document} (or 1+zf″(z)/f′(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1+zf''(z)/f'(z)$\end{document}) lies in a domain bounded by a right branch of a hyperbola ρ=ρ(s)=(2cosφs)−s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\rho =\rho (s)= ( 2 \cos \frac{\varphi }{s} )^{-s}$\end{document}, where 0<s≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0< s\le 1$\end{document} and |φ|<(πs)/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$|\varphi |<(\pi s)/2$\end{document}. A comprehensive characteristic of that families and relations with the well known families of univalent functions are presented. Some relevant examples are indicated.