Extrema Constrained by a Family of Curves and Local Extrema

被引:0
|
作者
O. Dogaru
I. Ţevy
C. Udrişte
机构
[1] Polytechnic University of Bucharest,Department of Mathematics I
来源
Journal of Optimization Theory and Applications | 1998年 / 97卷
关键词
Minima constrained by ; -curves; -curves defined by sequences; convexity; extrema;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the connections between the local extrema of a function f:D→R and the local extrema of the restrictions of f to specific subsets of D. In particular, such subsets may be parametrized curves, integral manifolds of a Pfaff system, Pfaff inequations. The paper shows the existence of C1 or C2-curves containing a given sequence of points. Such curves are then exploited to establish the connections between the local extrema of f and the local extrema of f constrained by the family of C1 or C2-curves. Surprisingly, what is true for C1-curves fails to be true in part for C2-curves. Sufficient conditions are given for a point to be a global minimum point of a convex function with respect to a family of curves.
引用
收藏
页码:605 / 621
页数:16
相关论文
共 50 条
  • [1] Extrema constrained by a family of curves and local extrema
    Dogaru, O
    Tevy, I
    Udriste, C
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (03) : 605 - 621
  • [2] εκ-Curves: controlled local curvature extrema
    Miura, Kenjiro T.
    Gobithaasan, R. U.
    Salvi, Peter
    Wang, Dan
    Sekine, Tadatoshi
    Usuki, Shin
    Inoguchi, Jun-ichi
    Kajiwara, Kenji
    VISUAL COMPUTER, 2022, 38 (08): : 2723 - 2738
  • [3] On constrained extrema
    Vogel, TI
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 176 (02) : 557 - 561
  • [4] Lorenz Curves of extrema
    Cascos, Ignacio
    Mendes, Miguel
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 81 - +
  • [5] ON CONSTRAINED BOTTLENECK EXTREMA
    LEE, J
    OPERATIONS RESEARCH, 1992, 40 (04) : 812 - 814
  • [6] Nondegeneracy of certain constrained extrema
    G. K. Giorgadze
    G. N. Khimshiashvili
    Doklady Mathematics, 2015, 92 : 691 - 694
  • [7] CONSTRAINED EXTREMA OF BILINEAR FUNCTIONALS
    MARCUS, M
    ANDRESEN, P
    MONATSHEFTE FUR MATHEMATIK, 1977, 84 (03): : 219 - 235
  • [8] Nondegeneracy of certain constrained extrema
    Giorgadze, G. K.
    Khimshiashvili, G. N.
    DOKLADY MATHEMATICS, 2015, 92 (03) : 691 - 694
  • [9] SUFFICIENCY CONDITIONS FOR CONSTRAINED EXTREMA
    LAW, VJ
    FARISS, RH
    AICHE JOURNAL, 1971, 17 (02) : 425 - +
  • [10] ON THE 2ND DERIVATIVE TEST FOR CONSTRAINED LOCAL EXTREMA
    SPRING, D
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (09): : 631 - 643