Pareto surface construction for multi-objective optimization under uncertainty

被引:0
|
作者
Chen Liang
Sankaran Mahadevan
机构
[1] Vanderbilt University,Department of Civil and Environmental Engineering
关键词
Multi-objective optimization; Uncertainty quantification; Bayesian network; Gaussian copula;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a novel approach for multi-objective optimization under both aleatory and epistemic sources of uncertainty. Given paired samples of the inputs and outputs from the system analysis model, a Bayesian network (BN) is built to represent the joint probability distribution of the inputs and outputs. In each design iteration, the optimizer provides the values of the design variables to the BN, and copula-based sampling is used to rapidly generate samples of the output variables conditioned on the input values. Samples from the conditional distributions are used to evaluate the objectives and constraints, which are fed back to the optimizer for further iteration. The proposed approach is formulated in the context of reliability-based design optimization (RBDO). The joint probability of multiple objectives and constraints is included in the formulation. The Bayesian network along with conditional sampling is exploited to select training points that enable effective construction of the Pareto front. A vehicle side impact problem is employed to demonstrate the proposed methodology.
引用
收藏
页码:1865 / 1882
页数:17
相关论文
共 50 条
  • [1] Pareto surface construction for multi-objective optimization under uncertainty
    Liang, Chen
    Mahadevan, Sankaran
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (05) : 1865 - 1882
  • [2] Multi-objective optimization under parametric uncertainty: A Pareto ellipsoids-based algorithm
    Mores, Wannes
    Nimmegeers, Philippe
    Hashem, Ihab
    Bhonsale, Satyajeet S.
    Van Impe, Jan F. M.
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 169
  • [3] Statistics of the Pareto front in Multi-objective Optimization under Uncertainties
    Bassi, Mohamed
    de Cursi, Eduardo Souza
    Pagnacco, Emmanuel
    Ellaia, Rachid
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2018, 15 (11):
  • [4] Multi-objective optimization for repetitive scheduling under uncertainty
    Salama, Tarek
    Moselhi, Osama
    ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2019, 26 (07) : 1294 - 1320
  • [5] Multi-objective tradeoff optimization under uncertainty in large-scale construction project
    Xu, Wuming
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2011, : 186 - 189
  • [6] Response surface approximation of Pareto optimal front in multi-objective optimization
    Goel, Tushar
    Vaidyanathan, Rajkumar
    Haftka, Raphael T.
    Shyy, Wei
    Queipo, Nestor V.
    Tucker, Kevin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 879 - 893
  • [7] Pareto-MEC for multi-objective optimization
    Sun, CY
    Qi, XH
    Li, O
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 321 - 328
  • [8] Local Pareto approximation for multi-objective optimization
    Utyuzhnikov, Sergei
    Maginot, Jeremy
    Guenov, Marin
    ENGINEERING OPTIMIZATION, 2008, 40 (09) : 821 - 847
  • [9] A General framework for solving multi-objective optimization under uncertainty
    Tan Lingjun
    Yang Chen
    2009 IEEE 6TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 2009, : 1725 - 1730
  • [10] Multi-objective Optimization under Uncertainty of Novel CHPC Process
    Previtali, Daniele
    Rossi, Francesco
    Reklaitis, Gintaras
    Manenti, Flavio
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 427 - 432