A Water Balance Model for a Subarctic Sedge Fen and its Application to Climatic Change

被引:0
|
作者
Wayne R. Rouse
机构
[1] McMaster University,Department of Geography
来源
Climatic Change | 1998年 / 38卷
关键词
Water Deficit; Summer Rainfall; Warming Scenario; Reservoir Capacity; Increase Water Deficit;
D O I
暂无
中图分类号
学科分类号
摘要
A model to calculate the water balance of a hummocky sedge fen in the northern Hudson Bay Lowland is presented. The model develops the potential latent heat flux (evaporation) as a function of net radiation and atmospheric temperature. It is about equally sensitive to a 2% change in net radiation and a 1°C change in temperature. The modelled potential evaporation agrees well with the Priestley–Taylor formulation of evaporation under conditions of a non-limiting water supply. The actual evaporative heat flux is modelled by expressing actual/potential evaporation as a function of potential accumulated water deficit. Model evaporation agrees well with energy balance calculations using 7 years of measured data including wet and dry extremes. Water deficit is defined as the depth of water below reservoir capacity. Modelled water table changes concur with measurements taken over a 4 year period. When net radiation, temperature and precipitation measurements are available the water balance can be projected to longer time periods. Over a 30 year interval (1965–1994) the water balance of the sedge fen showed the following. During the growing season, there was an increase in precipitation, no change in temperature and a decrease in net radiation, evapotranspiration and water deficit. There was also a decrease in winter snow depths. The fen was brought back to reservoir capacity during final snowmelt every year but one. Summer rainfall was the most important single factor affecting the water balance and the ratio actual/potential evaporation emerged as a linear function of rainfall amount. A 2 × CO2 climate warming scenario with an annual temperature increase of 4°C and no precipitation change indicates lesser snow amounts and a shorter snow cover period. A greater summer water deficit, triggered mainly by greater evaporation during the month of May, is partially alleviated by lesser evaporation magnitudes in July. The greater water deficit would be counterbalanced by a 23% increase in summer rainfall. On average, the fen's water reservoir would still be recharged after winter snowmelt but the ground would remain at reservoir capacity for a shorter time. The warming scenario with a 10% decline in summer rainfall would create a large increase in the longevity and severity of the water deficit and this would be particularly evident during drier years. The carbon budget and peat accumulation and breakdown rates are strongly affected by changes in the water balance. Some evidence implies that greater water deficits lead to an increase in net carbon emissions. This implies that the sedge peatland could lose biomass under such conditions. An example is given where increased water deficit results in large decreases in local wetland streamflow.
引用
收藏
页码:207 / 234
页数:27
相关论文
共 50 条
  • [1] A water balance model for a subarctic sedge fen and its application to climatic change
    Rouse, WR
    CLIMATIC CHANGE, 1998, 38 (02) : 207 - 234
  • [2] Consequences of climate change on the water balance of fen peatlands in Baden-Wuerttemberg
    Wattendorf, Peter
    Niederberger, Joerg
    Ehrmann, Otto
    Konold, Werner
    HYDROLOGIE UND WASSERBEWIRTSCHAFTUNG, 2010, 54 (05): : 293 - 303
  • [3] Two-Dimensional Energy Balance Model and Its Application to Some Climatic Issues
    李耀锟
    巢纪平
    Journal of Meteorological Research, 2014, 28 (05) : 747 - 761
  • [4] Two-dimensional energy balance model and its application to some climatic issues
    Li Yaokun
    Chao Jiping
    JOURNAL OF METEOROLOGICAL RESEARCH, 2014, 28 (05) : 747 - 761
  • [5] Two-dimensional energy balance model and its application to some climatic issues
    Yaokun Li
    Jiping Chao
    Journal of Meteorological Research, 2014, 28 : 747 - 761
  • [6] EFFECTS OF RAINFALL SHORTAGE AND CLIMATIC WATER BALANCE CHANGE ON AGRICULTURE
    Radzka, E.
    Jankowski, K.
    Jankowska, J.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (04): : 7667 - 7678
  • [7] Analysis of the sensitivity of water balance components to hydrogeological conditions and climatic change
    Nassery, HR
    Buchtele, J
    FRIEND'97-REGIONAL HYDROLOGY: CONCEPTS AND MODELS FOR SUSTAINABLE WATER RESOURCE MANAGEMENT, 1997, (246): : 205 - 212
  • [8] A two-parameter monthly water balance model and its application
    Xiong, LH
    Guo, SL
    JOURNAL OF HYDROLOGY, 1999, 216 (1-2) : 111 - 123
  • [9] Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus
    Charalambous, Katerina
    Bruggeman, Adriana
    Lange, Manfred A.
    WATER SCIENCE AND TECHNOLOGY, 2012, 66 (03) : 635 - 643
  • [10] A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model
    T. Scott Rupp
    Anthony M. Starfield
    F. Stuart Chapin
    Landscape Ecology, 2000, 15 : 383 - 400