Given a prime l and an elliptic curve E defined over a number field k, we show that a non-zero point P∈E(k) lies in lE(k) if and only if P lies in lE(k)(mod ?) for almost all finite primes ? of k. We give conditions on l under which analogous results hold for Abelian varieties and with one point replaced by a finite number of points. We also construct examples to show that these conditions are essential.
机构:
CUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USACUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA
Jordan, Bruce W.
Keeton, Allan G.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Commun Res, 805 Bunn Dr, Princeton, NJ 08540 USACUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA
Keeton, Allan G.
Poonen, Bjorn
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, Cambridge, MA 02139 USACUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA
Poonen, Bjorn
Rains, Eric M.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Dept Math, Pasadena, CA 91125 USACUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA
Rains, Eric M.
Shepherd-Barron, Nicholas
论文数: 0引用数: 0
h-index: 0
机构:
Kings Coll London, Dept Math, London WC2R 2LS, EnglandCUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA
Shepherd-Barron, Nicholas
Tate, John T.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USACUNY, Baruch Coll, Dept Math, One Bernard Baruch Way, New York, NY 10010 USA