We investigate a slowly rotating black hole solution in a novel Einstein–Maxwell-scalar theory, which is prompted by the classification of general Einstein–Maxwell-scalar theory. The gyromagnetic ratio of this black hole is calculated, and it increases as the second free parameter β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} increases, but decreases with the increasing parameter γ≡2α21+α2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma \equiv \frac{2 \alpha ^{2}}{1+\alpha ^2}$$\end{document}. In the Einstein–Maxwell-dilaton (EMD) theory, the parameter β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} vanishes but the free parameter α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document} governing the strength of the coupling between the dilaton and the Maxwell field remains. The gyromagnetic ratio is always less than 2, the well-known value for a Kerr–Newman (KN) black hole as well as for a Dirac electron. Scalar hairs reduce the magnetic dipole moment in dilaton theory, resulting in a drop in the gyromagnetic ratio. However, we find that the gyromagnetic ratio of two can be realized in this Einstein–Maxwell-scalar theory by increasing β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} and the charge-to-mass ratio Q/M simultaneously (recall that the gyromagnetic ratio of KN black holes is independent of Q/M). The same situation also applies to the angular velocity of a locally non-rotating observer. Moreover, we analyze the period correction for circular orbits in terms of charge-to-mass ratio, as well as the correction of the radius of the innermost stable circular orbits. It is found the correction increases with β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} but decreases with Q/M. Finally, the total radiative efficiency is investigated, and it can vanish once the effect of rotation is considered.