A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex

被引:0
|
作者
Fangfang Zhu
Yang Peng
Hua Zhu
机构
[1] Sichuan University,School of Chemistry
来源
关键词
Ar–SO; Potential energy surface; Rovibrational energy levels; Rovibrational spectra;
D O I
暂无
中图分类号
学科分类号
摘要
We present a full-dimensional potential energy surface for Ar–SO2 which involves three intramolecular Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{1}$$\end{document}, Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{2}$$\end{document} and Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{3}$$\end{document} normal modes for the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} symmetric stretching, ν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{2}$$\end{document} bending and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} asymmetric stretching vibrations of SO2. The intermolecular potential was computed at the [CCSD(T)]-F12a level with aug-cc-pVTZ basis set plus the midpoint bond functions (3s3p2d1f1g). Three vibrationally averaged potentials of Ar–SO2 with SO2 in the ground state as well as the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} excited states were generated by integrating three intramolecular coordinates. Each potential has a global minimum with the non-planar geometry and two saddle points. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were utilized to calculate the rovibrational bound states and energy levels of Ar–SO2. The vibrational band origin shifts for this complex in the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} regions of SO2 were determined to be − 0.0970 and − 0.7537 cm−1, respectively. The calculated origin shifts as well as the microwave and infrared transition frequencies agree well with available experimental results.
引用
收藏
相关论文
共 50 条
  • [1] A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar-SO2 complex
    Zhu, Fangfang
    Peng, Yang
    Zhu, Hua
    THEORETICAL CHEMISTRY ACCOUNTS, 2022, 141 (10)
  • [2] A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar-HF complex
    Huang, Jing
    Zhou, Yanzi
    Xie, Daiqian
    MOLECULAR PHYSICS, 2018, 116 (7-8) : 835 - 842
  • [3] A full-dimensional ab initio intermolecular potential energy surface and rovibrational spectra for OC-HF and OC-DF
    Liu, Qiong
    Liu, Lu
    An, Feng
    Huang, Jing
    Zhou, Yanzi
    Xie, Daiqian
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08):
  • [4] A New Full-Dimensional Ab Initio Intermolecular Potential Energy Surface and Rovibrational Energies of the H2O-H2 Complex
    Yu, Yipeng
    Yang, Dongzheng
    Zhou, Yanzi
    Xie, Daiqian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 128 (01): : 170 - 181
  • [5] New potential energy surface and rovibrational spectra of Ar•••HCl complex: An ab initio study
    Jouypazadeh, Hamidreza
    Solimannejad, Mohammad
    Farrokhpour, Hossein
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2016, 1083 : 64 - 71
  • [6] A new four-dimensional ab initio potential energy surface and rovibrational spectra for the C2H2-Ar complex
    Han, Chaoying
    Pei, Xin
    Zhu, Hua
    Fan, Hongjun
    MOLECULAR PHYSICS, 2020, 118 (14)
  • [7] Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO
    Conte, Riccardo
    Houston, Paul L.
    Bowman, Joel M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (15):
  • [8] An accurate full-dimensional potential energy surface for the reaction OH plus SO → H + SO2
    Qin, Jie
    Li, Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (01) : 487 - 497
  • [9] Full-dimensional analytical ab initio potential energy surface of the ground state of HOI
    de Oliveira-Filho, Antonio G. S.
    Aoto, Yuri A.
    Ornellas, Fernando R.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):
  • [10] Theoretical calculation of a full-dimensional ab initio potential energy surface and prediction of infrared spectra for Xe-CS2
    Qin, Miao
    Xiao, Xiuchan
    Zhu, Hua
    RSC ADVANCES, 2019, 9 (36): : 20925 - 20930