(;
, ;
)-weak tractability;
linear problem;
linear tensor product problem;
Hilbert space;
average case setting;
41A63;
65Y20;
68Q25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The purpose of this article is to investigate (s, t)-weak tractability of multivariate linear problems in the average case setting. The considered algorithms use finitely many evaluations of arbitrary linear functionals. Generally, we obtained matching necessary and sufficient conditions for (s, t)-weak tractability in terms of the corresponding non-increasing sequence of eigenvalues. Specifically, we discussed (s, t)-weak tractability of linear tensor product problems and obtained necessary and sufficient conditions in terms of the corresponding one-dimensional problem. As an example of applications, we discussed also (s, t)-weak tractability of a multivariate approximation problem.
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USAColumbia Univ, Dept Comp Sci, New York, NY 10027 USA
Papageorgiou, A.
Petras, I.
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USAColumbia Univ, Dept Comp Sci, New York, NY 10027 USA
Petras, I.
Wozniakowski, H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Univ Warsaw, Inst Appl Math, Warsaw, PolandColumbia Univ, Dept Comp Sci, New York, NY 10027 USA
机构:
Univ Jena, Math Inst, Ernst Abbe Pl 2, D-07743 Jena, GermanyUniv Jena, Math Inst, Ernst Abbe Pl 2, D-07743 Jena, Germany
Novak, Erich
Wozniakowski, Henryk
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Univ Warsaw, Inst Appl Math, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Jena, Math Inst, Ernst Abbe Pl 2, D-07743 Jena, Germany