On embeddings of Morrey type spaces between weighted Lebesgue or Stummel spaces with application to Herz spaces

被引:0
|
作者
Humberto Rafeiro
Stefan Samko
机构
[1] United Arab Emirates University,College of Sciences, Department of Mathematical Science
[2] University of Algarve,Department of Mathematics, Faculty of Sciences and Technology
[3] Kh. Ibragimov Complex Institute of Russian Academy of Sciences,undefined
关键词
Morrey type spaces; Weighted Lebesgue spaces; Embeddings; Stummel spaces; Herz spaces; 46E30; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study embeddings of Morrey type spaces Mp,q,ω(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{M}}^{p,q,\omega } ({\mathbb {R}}^n ) $$\end{document}, 1⩽p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant p<\infty $$\end{document}, 1⩽q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant q<\infty $$\end{document}, both local and global, into weighted Lebesgue spaces Lp(Rn,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{L}}^p({\mathbb {R}}^n ,w) $$\end{document}, with the main goal to better understand the local behavior of functions f∈Mp,q,ω(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f \in {\varvec{M}}^{p,q,\omega } ({\mathbb {R}}^n ) $$\end{document} and also their behavior at infinity. Under some assumptions on the function ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \omega $$\end{document}, we prove that the local Morrey type space is embedded into Lp(Rn,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{L}}^{p } ({\mathbb {R}}^n ,w) $$\end{document}, where w(r)=ω(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ w(r)=\omega (r) $$\end{document} if q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q=1 $$\end{document}, and w(r) is “slightly distorted” in comparison with ω(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \omega (r) $$\end{document} if q>1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q>1.$$\end{document} In the case q>p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q>p $$\end{document} we show that the embedding, in general, cannot hold with ω=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \omega =w $$\end{document}. For global Morrey type spaces we also prove embeddings into Stummel spaces. Similar embeddings for complementary Morrey type spaces are obtained. We also study inverse embeddings of weighted Lebesgue spaces Lp(Rn,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{L}}^{p } ({\mathbb {R}}^n , w) $$\end{document} into Morrey type and complementary Morrey type spaces. Finally, using our previous results on relations between Herz and Morrey type spaces, we obtain “for free” similar embeddings for Herz spaces.
引用
收藏
相关论文
共 50 条