Deep Convolution Neural Network-Based Crack Feature Extraction, Detection and Quantification

被引:0
|
作者
Shuai Teng
Gongfa Chen
机构
[1] Guangdong University of Technology,School of Civil and Transportation Engineering
关键词
Structural health monitoring; Convolution neural network; Crack detection; Crack quantification;
D O I
暂无
中图分类号
学科分类号
摘要
Timely crack detection and evaluation is essential to prevent the further deterioration of the structural damage, and convolutional neural networks (CNNs) have potential applications due to their powerful feature extraction capability. Therefore, this paper employs some well-known CNN models to detect cracks and reveal the extraction features of the CNN. Subsequently, a state-of-the-art pixel-level segmentation CNN (DeepLab_v3+) was employed for crack segmentation, and the physical properties (the length and width, and so on) of the cracks were calculated according to the segmentation results. The results confirm that the CNN can effectively extract the features of different categories of cracks, and the transferred SqueezeNet has the best performance in the classification of the cracks, with competitive computational speed and accuracy, and the CNN trained on concrete cracks can also effectively detect cracks in asphalt pavement and walls. DeepLab_v3+ can also achieve the ideal performance of cracks segmentation (the MIoU, accuracy and F-score were 0.80, 97.5 and 0.78%, respectively). Finally, the proposed quantization method based on MATLAB platform achieves the desired accuracy, and the average relative errors of the length, average width, maximum width, area and cracking ratio were 7, 2, 22, 27 and 27%, respectively.
引用
收藏
页码:1308 / 1321
页数:13
相关论文
共 50 条
  • [1] Deep Convolution Neural Network-Based Crack Feature Extraction, Detection and Quantification
    Teng, Shuai
    Chen, Gongfa
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2022, 22 (03) : 1308 - 1321
  • [2] Deep convolution neural network-based transfer learning method for civil infrastructure crack detection
    Yang, Qiaoning
    Shi, Weimin
    Chen, Juan
    Lin, Weiguo
    AUTOMATION IN CONSTRUCTION, 2020, 116 (116)
  • [3] Feature extraction and neural network-based fatigue damage detection and classification
    Alqahtani, Hassan
    Ray, Asok
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (23): : 21253 - 21273
  • [4] Feature extraction and neural network-based fatigue damage detection and classification
    Hassan Alqahtani
    Asok Ray
    Neural Computing and Applications, 2022, 34 : 21253 - 21273
  • [5] Blade-vortex interaction detection and extraction under deep neural network-based scale feature model
    Wang, Lu
    Hu, Xiaoqing
    Liu, Xiaorui
    Bao, Ming
    Guan, Luyang
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (02): : 1479 - 1495
  • [6] Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
    Xu, Minggang
    Li, Chong
    Chen, Ying
    Wei, Wu
    Journal of Beijing Institute of Technology (English Edition), 2024, 33 (05): : 422 - 435
  • [7] Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
    Minggang Xu
    Chong Li
    Ying Chen
    Wu Wei
    Journal of Beijing Institute of Technology, 2024, 33 (05) : 422 - 435
  • [8] Facial Beauty Prediction Based on Lighted Deep Convolution Neural Network with Feature Extraction Strengthened
    GAN Junying
    JIANG Kaiyong
    TAN Haiying
    HE Guohui
    ChineseJournalofElectronics, 2020, 29 (02) : 312 - 321
  • [9] Facial Beauty Prediction Based on Lighted Deep Convolution Neural Network with Feature Extraction Strengthened
    Gan, Junying
    Jiang, Kaiyong
    Tan, Haiying
    He, Guohui
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (02) : 312 - 321
  • [10] Deep neural network-based relation extraction: an overview
    Wang, Hailin
    Qin, Ke
    Zakari, Rufai Yusuf
    Lu, Guoming
    Yin, Jin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4781 - 4801