A Kirchhoff Type Equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\mathbb {R}}^{N}$$\end{document} Involving the fractional (p, q)-Laplacian

被引:0
|
作者
Vincenzo Ambrosio
机构
[1] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
来源
The Journal of Geometric Analysis | 2022年 / 32卷 / 4期
关键词
Fractional (; , ; )-Laplacian problem; Kirchhoff type problem; Penalization technique; Lusternik–Schnirelman theory; 35A15; 35J62; 35Q55; 55M30;
D O I
10.1007/s12220-022-00876-5
中图分类号
学科分类号
摘要
In this paper, we deal with the following class of fractional (p, q)-Laplacian Kirchhoff type problem: 1+[u]s,pp(-Δ)psu+1+[u]s,qq(-Δ)qsu+V(εx)(|u|p-2u+|u|q-2u)=f(u)inRN,u∈Ws,p(RN)∩Ws,q(RN),u>0inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \left( 1+[u]_{s,p}^{p}\right) (-\Delta )_{p}^{s}u+ \left( 1+[u]^{q}_{s, q}\right) (-\Delta )_{q}^{s}u + V(\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) &{} \text{ in } \mathbb {R}^{N}, \\ u\in W^{s, p}(\mathbb {R}^{N})\cap W^{s,q}(\mathbb {R}^{N}), \quad u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$\end{document}where ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0, 1)$$\end{document}, 1<p<q<Ns<2q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q<\frac{N}{s}<2q$$\end{document}, (-Δ)ts\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_{t}^{s}$$\end{document}, with t∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \{p, q\}$$\end{document}, is the fractional t-Laplacian operator, V:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V:\mathbb {R}^{N}\rightarrow \mathbb {R}$$\end{document} is a positive continuous potential such that inf∂ΛV>infΛV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf _{\partial \Lambda }V>\inf _{\Lambda } V$$\end{document} for some bounded open set Λ⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \subset \mathbb {R}^{N}$$\end{document}, and f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a superlinear continuous nonlinearity with subcritical growth at infinity. By combining the method of Nehari manifold, a penalization technique, and the Lusternik–Schnirelman category theory, we study the multiplicity and concentration properties of solutions for the above problem when ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
相关论文
共 50 条