Magnetic Monopoles over Topologically Nontrivial Riemann Surfaces

被引:0
|
作者
I. MARTIN
A. RESTUCCIA
机构
[1] Universidad Simón Bolívar,Departamento de Física
来源
关键词
monopoles; Seiberg-Witten equations; Riemann surfaces.;
D O I
暂无
中图分类号
学科分类号
摘要
An explicit canonical construction of monopole connections on nontrivial U(1) bundles over Riemann surfaces of any genus is given. The class of monopole solutions depends on the conformal class of the given Riemann surface and a set of integer weights. The reduction of Seiberg--Witten 4-monopole equations to Riemann surfaces is performed. It is then shown that the monopole connections constructed are solutions to these equations.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 50 条
  • [1] Magnetic monopoles over topologically nontrivial Riemann surfaces
    Martin, I
    Restuccia, A
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (04) : 379 - 391
  • [2] TOPOLOGICALLY NONTRIVIAL LOOP MONOPOLES
    OVIDKO, IA
    JETP LETTERS, 1987, 45 (01) : 1 - 3
  • [3] Topologically nontrivial sectors of Maxwell field theory on Riemann surfaces
    Ferrari, F
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (04) : 371 - 378
  • [4] Topologically Nontrivial Sectors of Maxwell Field Theory on Riemann Surfaces
    Franco Ferrari
    Letters in Mathematical Physics, 1997, 41 : 371 - 378
  • [5] Topologically massive magnetic monopoles
    Aliev, AN
    Nutku, Y
    Saygili, K
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (19) : 4111 - 4123
  • [6] Topologically Nontrivial Spin Textures in Thin Magnetic Films
    A. S. Samardak
    A. G. Kolesnikov
    A. V. Davydenko
    M. E. Steblii
    A. V. Ognev
    Physics of Metals and Metallography, 2022, 123 : 238 - 260
  • [7] Topologically Nontrivial Spin Textures in Thin Magnetic Films
    Samardak, A. S.
    Kolesnikov, A. G.
    Davydenko, A. V.
    Steblii, M. E.
    Ognev, A. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2022, 123 (03): : 238 - 260
  • [9] Topologically singular points in the moduli space of Riemann surfaces
    Costa, Antonio F.
    Porto, Ana M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (03) : 685 - 692
  • [10] Topologically singular points in the moduli space of Riemann surfaces
    Antonio F. Costa
    Ana M. Porto
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 685 - 692