Nitric Oxide is Required for Aminolevulinic Acid-Induced Salt Tolerance by Lowering Oxidative Stress in Maize (Zea mays)

被引:0
|
作者
Cengiz Kaya
Muhammad Ashraf
机构
[1] Harran University,Department of Soil Science & Plant Nutrition, Faculty of Agriculture
[2] University of Agriculture,undefined
来源
关键词
Aminolevulinic acid; Maize; Nitric oxide; Oxidative stress; Leaf water potential; Salt tolerance;
D O I
暂无
中图分类号
学科分类号
摘要
Although some investigations show that 5-aminolevulinic acid (ALA) participates in plant stress tolerance, the role of nitric oxide (NO) in ALA-induced improvement in tolerance to salt stress in plants necessitates to be understood. So, a NO scavenger, 0.1 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO); was applied jointly with ALA. Of four ALA concentrations tested in a preliminary experiment, 20 mg L−1 was chosen to apply as seed treatment or foliage spray to saline-stressed maize seedlings. Salinity (100 mM NaCl) significantly led to reduction in plant biomass, PSII maximum efficiency (Fv/Fm), total chlorophyll, leaf potassium (K+) and calcium (Ca2+) as well as leaf water potential in both cultivars, but it led to enhanced contents of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), electrolyte leakage (EL) and leaf sodium (Na+) as well as internal NO and nitric oxide synthase (NOS). ALA treatments improved plant growth, activities of antioxidant enzymes, and leaf Ca2+ and K+, but it led to further increases in leaf NO and NOS activity as well as ALA levels. ALA-induced salt tolerance was completely abolished by cPTIO application by eliminating the internal NO generation. This evidently showed that ALA triggered the synthesis of NO through activation of NOS, which in turn improved salt tolerance of the maize plants.
引用
收藏
页码:617 / 627
页数:10
相关论文
共 50 条
  • [1] Nitric Oxide is Required for Aminolevulinic Acid-Induced Salt Tolerance by Lowering Oxidative Stress in Maize (Zea mays)
    Kaya, Cengiz
    Ashraf, Muhammad
    JOURNAL OF PLANT GROWTH REGULATION, 2021, 40 (02) : 617 - 627
  • [2] Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays)
    Sun, Baoteng
    Jing, Yan
    Chen, Kunming
    Song, Lili
    Chen, Fangjian
    Zhang, Lixin
    JOURNAL OF PLANT PHYSIOLOGY, 2007, 164 (05) : 536 - 543
  • [3] Exogenously applied nitric oxide confers tolerance to salinity-induced oxidative stress in two maize (Zea mays L.) cultivars differing in salinity tolerance
    Kaya, Cengiz
    Ashraf, Muhammed
    Sonmez, Osman
    Tuna, Atilla Levent
    Aydemir, Salih
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2015, 39 (06) : 909 - 919
  • [4] SALICYLIC ACID INDUCED SALINITY TOLERANCE IN MAIZE (ZEA MAYS)
    Tufail, Aasma
    Arfan, Muhammad
    Gurmani, Ali Raza
    Khan, Abdullah
    Bano, Asghari
    PAKISTAN JOURNAL OF BOTANY, 2013, 45 : 75 - 82
  • [5] Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.)
    Renyi Peng
    Zhiyuan Bian
    Lina Zhou
    Wei Cheng
    Na Hai
    Changquan Yang
    Tao Yang
    Xinyu Wang
    Chongying Wang
    Plant Cell Reports, 2016, 35 : 2325 - 2340
  • [6] Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.)
    Peng, Renyi
    Bian, Zhiyuan
    Zhou, Lina
    Cheng, Wei
    Hai, Na
    Yang, Changquan
    Yang, Tao
    Wang, Xinyu
    Wang, Chongying
    PLANT CELL REPORTS, 2016, 35 (11) : 2325 - 2340
  • [7] 5-Aminolevulinic acid-induced salt tolerance in strawberry (cv. 'Benihoppe'): Possible role of nitric oxide on interception of salt ions in roots
    He, Sha-sha
    Yang, Hao
    Cao, Rong-qiang
    Tang, Quan
    An, Yu-yan
    Wang, Liang-ju
    SCIENTIA HORTICULTURAE, 2022, 304
  • [8] EFFECT OF NEPHTHYL ACETIC ACID FOLIAR SPRAY ON AMELIORATION OF SALT STRESS TOLERANCE IN MAIZE (ZEA MAYS L.)
    Khan, T.
    Ullah, S.
    Shuaib, M.
    Alsamadany, H.
    Alzahrani, Y.
    Alharbi, N.
    Shah, M.
    Khan, A.
    Khan, I
    Hussain, F.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (02): : 1817 - 1834
  • [9] Screening maize (Zea mays L.) hybrids for salt stress tolerance at germination stage
    Khodarahmpour, Zahra
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (71): : 15959 - 15965
  • [10] Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought
    Chugh, Vishal
    Kaur, Narinder
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2011, 48 (01): : 47 - 53