Parameters and characterizations of hulls of some projective narrow-sense BCH codes

被引:0
|
作者
Yuwen Huang
Chengju Li
Qi Wang
Zongrun Du
机构
[1] East China Normal University,Shanghai Key Laboratory of Trustworthy Computing
[2] State Key Laboratory of Cryptology,Department of Computer Science and Engineering and National Center for Applied Mathematics (Shenzhen)
[3] State Key Laboratory of Integrated Services and Networks,undefined
[4] Southern University of Science and Technology,undefined
来源
关键词
BCH code; Cyclic code; Self-orthogonal code; Hull; Cyclotomic coset; 94B05; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
The (Euclidean) hull of a linear code is defined to be the intersection of the code and its Euclidean dual. It is clear that the hulls are self-orthogonal codes, which are an important type of linear codes due to their wide applications in communication and cryptography. Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F_q$$\end{document} be the finite field of order q and n=qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \frac{q^m-1}{q-1}$$\end{document}, where q is a power of a prime and m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document} is an integer. Let C(q,n,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_{(q,n,\delta )}$$\end{document} be a projective narrow-sense BCH code over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F_q$$\end{document} with designed distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we will investigate both the dimensions and the minimum distances of Hull(C(q,n,δ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hull}({\mathcal {C}}_{(q,n,\delta )})$$\end{document}, where 2≤δ≤2(qm+12-1)q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le \delta \le \frac{2(q^{\frac{m+1}{2}} -1)}{q-1}$$\end{document} if m≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 5$$\end{document} is odd and 2≤δ≤qm2+1-1q-1-q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le \delta \le \frac{q^{\frac{m}{2}+1}-1}{q-1}-q+1$$\end{document} if m≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 6$$\end{document} is even. As a byproduct, a sufficient and necessary condition on the Euclidean dual-containing BCH code C(q,n,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_{(q,n,\delta )}$$\end{document} is documented. In addition, we present some characterizations of the hulls of ternary projective narrow-sense BCH codes when dim(Hull(C(3,n,δ)))=k-1,k-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \Big (\text {Hull} ({\mathcal {C}}_{(3,n,\delta )})\Big )=k-1, \ k-2$$\end{document} for even m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}; and dim(Hull(C(3,n,δ)))=k-1,k-2m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \Big (\text {Hull} ({\mathcal {C}}_{(3,n,\delta )})\Big )=k-1, \ k-2m-1$$\end{document} for odd m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3$$\end{document}, where k is the dimension of C(3,n,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_{(3,n,\delta )}$$\end{document}.
引用
收藏
页码:87 / 106
页数:19
相关论文
共 36 条
  • [1] Parameters and characterizations of hulls of some projective narrow-sense BCH codes
    Huang, Yuwen
    Li, Chengju
    Wang, Qi
    Du, Zongrun
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 87 - 106
  • [2] PARAMETERS OF HULLS OF PRIMITIVE BINARY NARROW-SENSE BCH CODES AND THEIR SUBCODES
    Gong, Binkai
    Li, Chengju
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 741 - 752
  • [3] A Class of Narrow-Sense BCH Codes
    Zhu, Shixin
    Sun, Zhonghua
    Kai, Xiaoshan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4699 - 4714
  • [4] Parameters of Squares of Primitive Narrow-Sense BCH Codes and Their Complements
    Dong, Shuying
    Li, Chengju
    Mesnager, Sihem
    Qian, Haifeng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5017 - 5031
  • [5] THE MINIMUM DISTANCE OF SOME NARROW-SENSE PRIMITIVE BCH CODES
    Li, Shuxing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2530 - 2569
  • [6] Long binary narrow-sense BCH codes are normal
    Honkala, I
    Kaipainen, Y
    Tietavainen, A
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (01) : 49 - 55
  • [7] Long binary narrow-sense BCH codes are normal
    Iiro Honkala
    Yrjö Kaipainen
    Aimo Tietäväinen
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 49 - 55
  • [8] Two Classes of Narrow-Sense BCH Codes and Their Duals
    Wang, Xiaoqiang
    Wang, Jiaojiao
    Li, Chengju
    Wu, Yansheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 131 - 144
  • [9] Statistical Approach for Blind Recognition of Narrow-sense BCH Codes
    Kim, Jiho
    Kwon, Soonhee
    Shin, Dong-Joon
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 363 - 366
  • [10] The Duals of Narrow-Sense BCH Codes With Length qm-1/λ
    Wang, Xiaoqiang
    Xiao, Chengliang
    Zheng, Dabin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7777 - 7789