Cancer Identification in Enteric Nervous System Preclinical Images Using Handcrafted and Automatic Learned Features

被引:0
|
作者
Gustavo Z. Felipe
Lucas O. Teixeira
Rodolfo M. Pereira
Jacqueline N. Zanoni
Sara R. G. Souza
Loris Nanni
George D. C. Cavalcanti
Yandre M. G. Costa
机构
[1] Universidade Estadual de Maringá,Departamento de Informática
[2] Instituto Federal do Paraná,Departamento de Ciências Morfológicas
[3] Universidade Estadual de Maringá,Dipartimento di Ingegneria dell’Informazione
[4] Universidade Estadual do Oeste do Paraná,undefined
[5] Università degli Studi di Padova,undefined
[6] Universidade Federal de Pernambuco,undefined
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Enteric Nervous system; Pattern recognition; Preclinical Images; Walker-256 Tumor; Image disease recognition; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Chronic degenerative diseases affect Enteric Neuron Cells (ENC) and Enteric Glial Cells (EGC) in shape and quantity. Thus, searching for automatic methods to evaluate when these cells are affected is quite opportune. In addition, preclinical imaging analysis is outstanding because it is non-invasive and avoids exposing patients to the risk of death or permanent disability. We aim to identify a specific cancer experimental model (Walker-256 tumor) in the Enteric Nervous System (ENS) cells. The ENS image database used in our experimental evaluation comprises 1248 images taken from thirteen rats distributed in two classes: control/healthy or sick. The images were created with three distinct contrast settings targeting different ENS cells: ENC, EGC, or both. We extracted handcrafted and non-handcrafted features to provide a comprehensive classification approach using SVM as the core classifier. We also applied Late Fusion techniques to evaluate the complementarity between feature sets obtained in different scenarios. In the best case, we achieved an F1-score of 0.9903 by combining classifiers built from different image types (ENC and EGC), using Local Phase Quantization (LPQ) features.
引用
收藏
页码:5811 / 5832
页数:21
相关论文
共 50 条
  • [1] Cancer Identification in Enteric Nervous System Preclinical Images Using Handcrafted and Automatic Learned Features
    Felipe, Gustavo Z. Z.
    Teixeira, Lucas O. O.
    Pereira, Rodolfo M. M.
    Zanoni, Jacqueline N. N.
    Souza, Sara R. G.
    Nanni, Loris
    Cavalcanti, George D. C.
    Costa, Yandre M. G.
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5811 - 5832
  • [2] Automatic chronic degenerative diseases identification using enteric nervous system images
    Gustavo Z. Felipe
    Jacqueline N. Zanoni
    Camila C. Sehaber-Sierakowski
    Gleison D. P. Bossolani
    Sara R. G. Souza
    Franklin C. Flores
    Luiz E. S. Oliveira
    Rodolfo M. Pereira
    Yandre M. G. Costa
    Neural Computing and Applications, 2021, 33 : 15373 - 15395
  • [3] Automatic chronic degenerative diseases identification using enteric nervous system images
    Felipe, Gustavo Z.
    Zanoni, Jacqueline N.
    Sehaber-Sierakowski, Camila C.
    Bossolani, Gleison D. P.
    Souza, Sara R. G.
    Flores, Franklin C.
    Oliveira, Luiz E. S.
    Pereira, Rodolfo M.
    Costa, Yandre M. G.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15373 - 15395
  • [4] Automatic detection of breast cancer in ultrasound images using Mayfly algorithm optimized handcrafted features
    Vijayakumar, K.
    Rajinikanth, V
    Kirubakaran, M. K.
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (04) : 751 - 766
  • [5] Breast cancer classification using deep learned features boosted with handcrafted features
    Sajid, Unaiza
    Khan, Rizwan Ahmed
    Shah, Shahid Munir
    Arif, Sheeraz
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [6] Automatic Screening System to Distinguish Benign/Malignant Breast-Cancer Histology Images Using Optimized Deep and Handcrafted Features
    Yongguo Yang
    International Journal of Computational Intelligence Systems, 16
  • [7] Automatic Screening System to Distinguish Benign/Malignant Breast-Cancer Histology Images Using Optimized Deep and Handcrafted Features
    Yang, Yongguo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [8] Learned versus Handcrafted Features for Person Re-identification
    Chahla, C.
    Snoussi, H.
    Abdallah, F.
    Dornaika, F.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (04)
  • [9] Automatic Building Change Detection on Aerial Images using Convolutional Neural Networks and Handcrafted Features
    Javier Quispe, Diego Alonso
    Sulla-Torres, Jose
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (06) : 679 - 684
  • [10] Automatic building change detection on aerial images using convolutional neural networks and handcrafted features
    Quispe D.A.J.
    Sulla-Torres J.
    1600, Science and Information Organization (11): : 679 - 684