By a Fitting set of a group G one means a nonempty set of subgroups F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr{F}$$\end{document}
of a finite group G which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr{F}$$\end{document}
-injectors of a partially π-solvable group G is proved and the structure of F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr{F}$$\end{document}-injectors is described for the case in which F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr{F}$$\end{document} is a Hartley set of G.
机构:
Shandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R ChinaShandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
Liu, Yufeng
Yi, Xiaolan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R ChinaShandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
Yi, Xiaolan
Vorob'ev, N. T.
论文数: 0引用数: 0
h-index: 0
机构:
Masherov Vitebsk State Univ, Dept Math, Vitebsk 210038, BELARUSShandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China