Micro-Steel Fiber-Reinforced Self-compacting Concrete-Filled Steel-Tube Columns Subjected to Axial Compression

被引:0
|
作者
S. M. Imam Shah
G. Mohan Ganesh
机构
[1] Vellore Institute of Technology,
关键词
Concrete-filled steel tube; Ductility index; Local buckling; Micro-steel fibers; Ultimate capacity; Uniaxial compression;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental and analytical investigations of steel-tube specimens filled with micro-steel-fiber-reinforced self-compacting concrete are presented in this study. The purpose of this study was to investigate the influence of micro-steel fibers on the strength and behavior of concrete-filled steel-tube (CFST) specimens with different wall thicknesses, length/diameter (L/D) ratios, and micro-steel fibers. Because concrete has weak tensile properties, the use of steel fibers is essential for enhancing the strain-softening characteristics. Hence, crimped micro-steel fibers with an aspect ratio of twenty-five were blended with self-compacting concrete and used as the infill for the CFST specimens. Sixty-four CFST specimens with thicknesses of 2 and 3 mm and L/D ratios of 3, 4, 5, and 6, along with micro-steel fibers with volume percentages of 0%, 0.5%, 1.0%, and 1.5%, were subjected to axial compression. The failure report includes the following modes of failure: ultimate capacities, deformation curves accompanying the effect of parameters such as the strength index, percentage of contribution of steel and concrete, confinement effect, and ductility index on the axial capacity of the CFST columns. The results indicated that the use of micro-steel fibers enhanced the ultimate capacity and ductility as well as delayed the local buckling of the specimens. The ultimate capacities of the columns were compared using design codes, such as the Eurocode (EC4), Australian code (AS5100), American code (AISC 360-10), American Concrete Institute (ACI-318), and Chinese code (DBJ13-51). An equation was proposed to determine the axial capacity, and the predicted results were close to the experimental test results and experimental data collected from 93 CFSTs in previous studies. The failure mechanism, buckling patterns, and deformation curves of all specimens were examined using the ABAQUS/CAE software, and the results were consistent with the experimental results.
引用
收藏
页码:1031 / 1045
页数:14
相关论文
共 50 条
  • [1] Micro-Steel Fiber-Reinforced Self-compacting Concrete-Filled Steel-Tube Columns Subjected to Axial Compression
    Shah, S. M. Imam
    Ganesh, G. Mohan
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2023, 23 (04) : 1031 - 1045
  • [2] Seismic performance of reinforced self-compacting concrete-filled circular steel-tube columns
    Gong, Tianniu
    Xu, Dunfeng
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 212
  • [3] Behavior of concrete-filled steel tube reinforced concrete columns subjected to axial compression
    Yao, Guohuang
    Li, Yongjin
    Liao, Feiyu
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2013, 34 (05): : 114 - 121
  • [4] Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns
    Li, Na
    Lu, Yiyan
    Li, Shan
    Gao, Danying
    ENGINEERING STRUCTURES, 2020, 222
  • [5] Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression
    Lu, Yiyan
    Li, Na
    Li, Shan
    Liang, Hongjun
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 95 : 74 - 85
  • [6] Behavior of Self-Compacting Concrete-Filled Steel Tube Columns with Inclined Stiffener Ribs Under Axial Compression
    Liang, W.
    Dong, J. F.
    Yuan, S. C.
    Wang, Q. Y.
    STRENGTH OF MATERIALS, 2017, 49 (01) : 125 - 132
  • [7] Behavior of Self-Compacting Concrete-Filled Steel Tube Columns with Inclined Stiffener Ribs Under Axial Compression
    W. Liang
    J. F. Dong
    S. C. Yuan
    Q. Y. Wang
    Strength of Materials, 2017, 49 : 125 - 132
  • [8] Behavior of Concrete-Filled Steel Tube Columns Subjected to Axial Compression
    Li, Pengfei
    Zhang, Tao
    Wang, Chengzhi
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [9] Steel fiber-reinforced recycled aggregate concrete-filled GFRP tube columns: Axial compression performance
    Huang, Dongming
    Liu, Zhenzhen
    Ma, Wentao
    Lu, Yiyan
    Li, Shan
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [10] Research on the mechanical performance of self-compacting & self-stressing concrete-filled steel tube subjected to axial compression
    Xu, Lei
    Huang, Chengkui
    1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete, 2005, 42 : 533 - 540