We study the fixation probability of a mutant type when introduced into a resident population. We implement a stochastic competitive Lotka–Volterra model with two types and intra- and interspecific competition. The model further allows for stochastically varying population sizes. The competition coefficients are interpreted in terms of inverse payoffs emerging from an evolutionary game. Since our study focuses on the impact of the competition values, we assume the same net growth rate for both types. In this general framework, we derive a formula for the fixation probability φ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document} of the mutant type under weak selection. We find that the most important parameter deciding over the invasion success of the mutant is its death rate due to competition with the resident. Furthermore, we compare our approximation to results obtained by implementing population size changes deterministically in order to explore the parameter regime of validity of our method. Finally, we put our formula in the context of classical evolutionary game theory and observe similarities and differences to the results obtained in that constant population size setting.
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
Balasekaran, Madhumitha
Johanis, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Dept Math Anal, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech RepublicVirginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
Johanis, Michal
Rychtar, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
Rychtar, Jan
Taylor, Dewey
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
Taylor, Dewey
Zhu, Jackie
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
机构:
Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA
Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA
Adlam, Ben
Nowak, Martin A.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USAHarvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA