Unboundedness of Adjacency Matrices of Locally Finite Graphs

被引:0
|
作者
Sylvain Golénia
机构
[1] Mathematisches Institut der Universität Erlangen-Nürnberg,
来源
关键词
47A10; 05C63; 05C50; 47B25; adjacency matrix; locally finite graphs; self-adjointness; unboundedness; semi-boundedness; spectrum; spectral graph theory;
D O I
暂无
中图分类号
学科分类号
摘要
Given a locally finite simple graph so that its degree is not bounded, every self-adjoint realization of the adjacency matrix is unbounded from above. In this note, we give an optimal condition to ensure it is also unbounded from below. We also consider the case of weighted graphs. We discuss the question of self-adjoint extensions and prove an optimal criterium.
引用
收藏
页码:127 / 140
页数:13
相关论文
共 50 条
  • [1] Unboundedness of Adjacency Matrices of Locally Finite Graphs
    Golenia, Sylvain
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (02) : 127 - 140
  • [2] On adjacency operators of locally finite graphs
    Trofimov, V. I.
    IZVESTIYA MATHEMATICS, 2024, 88 (03) : 542 - 589
  • [3] Commutativity of the adjacency matrices of graphs
    Akbari, S.
    Moazami, F.
    Mohammadian, A.
    DISCRETE MATHEMATICS, 2009, 309 (03) : 595 - 600
  • [4] GRAPHS WITH NILPOTENT ADJACENCY MATRICES
    LIEBECK, MW
    JOURNAL OF GRAPH THEORY, 1982, 6 (02) : 215 - 218
  • [5] DETERMINANTS OF ADJACENCY MATRICES OF GRAPHS
    Abdollahi, Alireza
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (04) : 9 - 16
  • [6] Hermitian Adjacency Matrices of Mixed Graphs
    Abudayah, Mohammad
    Alomari, Omar
    Sander, Torsten
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 841 - 855
  • [7] Invariant adjacency matrices of configuration graphs
    Abreu, M.
    Funk, M. J.
    Labbate, D.
    Napolitano, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (08) : 2026 - 2037
  • [8] Adjacency matrices and chemical transformation graphs
    L. A. Gribov
    V. A. Dementiev
    I. V. Mikhailov
    Journal of Structural Chemistry, 2008, 49 : 197 - 200
  • [9] On Graphs with Zero Determinant of Adjacency Matrices
    徐寅峰
    董峰明
    应用数学, 1996, (02) : 254 - 255
  • [10] Skew-adjacency matrices of graphs
    Cavers, M.
    Cioaba, S. M.
    Fallat, S.
    Gregory, D. A.
    Haemers, W. H.
    Kirkland, S. J.
    McDonald, J. J.
    Tsatsomeros, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4512 - 4529