Let s ∈ ℝ, 0 < β ≤ ∞, 0 < q, p < ∞ and –n/q < α. In this paper the authors introduce
the Herz-type Triebel–Lizorkin spaces, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
K^{{\alpha ,p}}_{q} F^{s}_{\beta } {\left( {\mathbb{R}^{n} } \right)}
$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\dot{K}^{{\alpha ,p}}_{q} F^{s}_{\beta } {\left( {\mathbb{R}^{n} } \right)},
$$\end{document}which are the generalizations of
the well-known Herz-type spaces and the inhomogeneous Triebel–Lizorkin spaces. Some properties on
these Herz-type Triebel–Lizorkin spaces are also given.
Laboratory of Functional Analysis and Geometry of Spaces, Faculty of Mathematics and Informatics, Department of Mathematics, M'sila University, PO Box 166 Ichebelia, M'sila
论文数: 0引用数: 0
h-index: 0
Laboratory of Functional Analysis and Geometry of Spaces, Faculty of Mathematics and Informatics, Department of Mathematics, M'sila University, PO Box 166 Ichebelia, M'sila