Herz-type Triebel–Lizorkin Spaces, I

被引:0
|
作者
Jing Shi Xu
Da Chun Yang
机构
[1] Beijing Normal University,Department of Mathematics
[2] Hunan Normal University,Department of Mathematics
[3] Beijing Normal University,Department of Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Herz space; Triebel–Lizorkin space; Maximal function; Embedding; Multiplier; Lifting property; 42B35; 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let s ∈ ℝ, 0 < β ≤ ∞, 0 < q, p < ∞ and –n/q < α. In this paper the authors introduce the Herz-type Triebel–Lizorkin spaces, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K^{{\alpha ,p}}_{q} F^{s}_{\beta } {\left( {\mathbb{R}^{n} } \right)} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot{K}^{{\alpha ,p}}_{q} F^{s}_{\beta } {\left( {\mathbb{R}^{n} } \right)}, $$\end{document}which are the generalizations of the well-known Herz-type spaces and the inhomogeneous Triebel–Lizorkin spaces. Some properties on these Herz-type Triebel–Lizorkin spaces are also given.
引用
收藏
页码:643 / 654
页数:11
相关论文
共 50 条