Nilpotent residual of fixed points

被引:0
|
作者
Emerson de Melo
Aline de Souza Lima
Pavel Shumyatsky
机构
[1] University of Brasília,Department of Mathematics
[2] Federal University of Goiás,Department of Mathematics and Statistics
来源
Archiv der Mathematik | 2018年 / 111卷
关键词
-groups; Automorphisms; Nilpotent residual; Primary 20D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite q′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q'$$\end{document}-group G. Assume that A has order at least q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^3$$\end{document}. We show that if γ∞(CG(a))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\infty } (C_{G}(a))$$\end{document} has order at most m for any a∈A#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in A^{\#}$$\end{document}, then the order of γ∞(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\infty } (G)$$\end{document} is bounded solely in terms of m and q. If γ∞(CG(a))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\infty } (C_{G}(a))$$\end{document} has rank at most r for any a∈A#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in A^{\#}$$\end{document}, then the rank of γ∞(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\infty } (G)$$\end{document} is bounded solely in terms of r and q.
引用
收藏
页码:13 / 21
页数:8
相关论文
共 50 条
  • [1] Nilpotent residual of fixed points
    de Melo, Emerson
    Lima, Aline de Souza
    Shumyatsky, Pavel
    ARCHIV DER MATHEMATIK, 2018, 111 (01) : 13 - 21
  • [2] FITTING SUBGROUP AND NILPOTENT RESIDUAL OF FIXED POINTS
    De Melo, Emerson
    Shumyatsky, Pavel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) : 61 - 67
  • [3] Nilpotent residual and fitting subgroup of fixed points in finite groups
    de Melo, Emerson
    JOURNAL OF GROUP THEORY, 2019, 22 (06) : 1059 - 1068
  • [4] Global fixed points for nilpotent actions on the torus
    Firmo, S.
    Ribon, J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) : 3339 - 3367
  • [5] Fixed points of nilpotent actions on S2
    Ribon, Javier
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 173 - 197
  • [6] FIXED POINTS OF NILPOTENT ACTIONS ON R2
    Firmo, Sebastiao
    Le Calvez, Patrice
    Ribon, Javier
    ASTERISQUE, 2020, (415) : 113 - 156
  • [7] FIXED POINTS OF DIFFEOMORPHISMS ON NILMANIFOLDS WITH A FREE NILPOTENT FUNDAMENTAL GROUP
    Dekimpe, Karel
    Tertooy, Sam
    Vargas, Antonio R.
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) : 147 - 164
  • [8] Fixed points and centers of automorphism groups of free nilpotent groups
    Formanek, E
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (02) : 1033 - 1038
  • [9] Automorphisms of free left nilpotent leibniz algebras and fixed points
    Drensky, V
    Papistas, AI
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 2957 - 2975
  • [10] A note on fixed points of certain relatively free nilpotent groups
    Papistas, AI
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (10) : 4693 - 4699