On Thermo-viscoelasticity with Variable Thermal Conductivity and Fractional-Order Heat Transfer

被引:0
|
作者
M. A. Ezzat
A. S. El-Karamany
A. A. El-Bary
机构
[1] Alexandria University,Department of Mathematics, Faculty of Education
[2] Al-Qassim University,Department of Mathematics, Faculty of Science and Letter in Al Bukayriyyah
[3] Nizwa University,Department of Mathematical and Physical Sciences
[4] Arab Academy for Science and Technology,undefined
来源
关键词
Thermo-viscoelasticity; Variable thermal conductivity ; Fractional heat transfer; Numerical calculations;
D O I
暂无
中图分类号
学科分类号
摘要
The equations of generalized thermo-viscoelasticity for an isotropic medium with variable thermal conductivity and fractional-order heat transfer are given. The resulting formulation is applied to a half-space subjected to arbitrary heating which is taken as a function of time and is traction free. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. Numerical results for temperature, displacement, and stress distributions are given and illustrated graphically for the problem. The effects of the fractional order and the variable thermal conductivity for heat transfer on a viscoelastic material such as poly(methyl methacrylate) (Perspex) are discussed.
引用
收藏
页码:1684 / 1697
页数:13
相关论文
共 50 条
  • [1] On Thermo-viscoelasticity with Variable Thermal Conductivity and Fractional-Order Heat Transfer
    Ezzat, M. A.
    El-Karamany, A. S.
    El-Bary, A. A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (07) : 1684 - 1697
  • [2] Fractional order theory of thermo-viscoelasticity and application
    Hany H. Sherief
    Mohammed A. El-Hagary
    Mechanics of Time-Dependent Materials, 2020, 24 : 179 - 195
  • [3] Fractional order theory of thermo-viscoelasticity and application
    Sherief, Hany H.
    El-Hagary, Mohammed A.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2020, 24 (02) : 179 - 195
  • [4] Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures
    Deswal, Sunita
    Kalkal, Kapil Kumar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 : 451 - 460
  • [5] Fractional thermo-viscoelasticity theory with and without energy dissipation
    Ezzat, Magdy A.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022, 32 (04) : 1903 - 1922
  • [6] Fractional calculus in one-dimensional isotropic thermo-viscoelasticity
    Ezzat, Magdy A.
    El-Karamany, Ahmed S.
    El-Bary, Alaa A.
    Fayik, Mohsen A.
    COMPTES RENDUS MECANIQUE, 2013, 341 (07): : 553 - 566
  • [7] HEAT INSTABILITY IN COUPLED DYNAMIC PROBLEMS OF THERMO-VISCOELASTICITY
    GUMENJUK, BP
    KARNAUKHOV, VG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (07): : 609 - 613
  • [8] HEAT INSTABILITY IN COUPLED DYNAMIC PROBLEMS OF THERMO-VISCOELASTICITY
    GUMENJUK, BP
    KARNAUKHOV, VG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1978, (07): : 609 - 613
  • [9] Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer
    Ezzat, M. A.
    El-Bary, A. A.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 : 305 - 315
  • [10] A modified fractional-order generalized piezoelectric thermoelasticity model with variable thermal conductivity
    Guo, Huili
    Li, Chenlin
    Tian, Xiaogeng
    JOURNAL OF THERMAL STRESSES, 2018, 41 (10-12) : 1538 - 1557