Learning Sparse Feature Representations Using Probabilistic Quadtrees and Deep Belief Nets

被引:0
|
作者
Saikat Basu
Manohar Karki
Sangram Ganguly
Robert DiBiano
Supratik Mukhopadhyay
Shreekant Gayaka
Rajgopal Kannan
Ramakrishna Nemani
机构
[1] Louisiana State University,Department of Computer Science
[2] Bay Area Environmental Research Institute (BAERI)/NASA Ames Research Center,NASA Advanced Supercomputing Division
[3] Applied Materials,undefined
[4] Inc.,undefined
[5] NASA Ames Research Center,undefined
[6] Autopredictive Coding,undefined
[7] LLC,undefined
来源
Neural Processing Letters | 2017年 / 45卷
关键词
Deep neural networks; Handwritten digit classification; Probabilistic quadtrees; Deep belief networks; Sparse feature representation;
D O I
暂无
中图分类号
学科分类号
摘要
Learning sparse feature representations is a useful instrument for solving an unsupervised learning problem. In this paper, we present three labeled handwritten digit datasets, collectively called n-MNIST by adding noise to the MNIST dataset, and three labeled datasets formed by adding noise to the offline Bangla numeral database. Then we propose a novel framework for the classification of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets. On the MNIST, n-MNIST and noisy Bangla datasets, our framework shows promising results and outperforms traditional Deep Belief Networks.
引用
收藏
页码:855 / 867
页数:12
相关论文
共 50 条
  • [1] Learning Sparse Feature Representations Using Probabilistic Quadtrees and Deep Belief Nets
    Basu, Saikat
    Karki, Manohar
    Ganguly, Sangram
    DiBiano, Robert
    Mukhopadhyay, Supratik
    Gayaka, Shreekant
    Kannan, Rajgopal
    Nemani, Ramakrishna
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 855 - 867
  • [2] Sparse Maximum Entropy Deep Belief Nets
    Jing, How
    Tsao, Yu
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [3] Multi-Level Gene/MiRNA Feature Selection using Deep Belief Nets and Active Learning
    Ibrahim, Rania
    Yousri, Noha A.
    Ismail, Mohamed A.
    El-Makky, Nagwa M.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 3957 - 3960
  • [4] Learning Invariant Riemannian Geometric Representations Using Deep Nets
    Lohit, Suhas
    Turaga, Pavan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1329 - 1338
  • [5] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [6] UNSUPERVISED FEATURE LEARNING USING MARKOV DEEP BELIEF NETWORK
    Cheng, Dongyang
    Sun, Tanfeng
    Jiang, Xinghao
    Wang, Shilin
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 260 - 264
  • [7] Construction of Deep ReLU Nets for Spatially Sparse Learning
    Liu, Xia
    Wang, Di
    Lin, Shao-Bo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7746 - 7760
  • [8] Learning sparse and smooth functions by deep Sigmoid nets
    LIU Xia
    Applied Mathematics:A Journal of Chinese Universities, 2023, 38 (02) : 293 - 309
  • [9] Learning sparse and smooth functions by deep Sigmoid nets
    Liu, Xia
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (02) : 293 - 309
  • [10] Learning sparse and smooth functions by deep Sigmoid nets
    Xia Liu
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 293 - 309