Continuous-Time Quantum Walk on Integer Lattices and Homogeneous Trees

被引:0
|
作者
Vladislav Kargin
机构
[1] Stanford University,Department of Mathematics
来源
关键词
Quantum walk; Tree; Limit theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the continuous-time quantum walk on ℤ, ℤd, and infinite homogeneous trees. By using the generating function method, we compute the limit of the average probability distribution for the general isotropic walk on ℤ, and for nearest-neighbor walks on ℤd and infinite homogeneous trees. In addition, we compute the asymptotic approximation for the probability of the return to zero at time t in all these cases.
引用
收藏
页码:393 / 408
页数:15
相关论文
共 50 条
  • [2] Spatial search by continuous-time quantum walk on truncated simplex lattices
    Zhu, Xuanmin
    Deng, Yuanchun
    Zhang, Dezheng
    Gao, Runping
    Wei, Qun
    Luo, Zijiang
    LASER PHYSICS LETTERS, 2023, 20 (03)
  • [3] Quantum Transport via Continuous-Time Quantum Walk
    Xie, Weichen
    ProQuest Dissertations and Theses Global, 2023,
  • [4] Resonant Quantum Kicked Rotor as A Continuous-Time Quantum Walk
    Delvecchio, Michele
    Petiziol, Francesco
    Wimberger, Sandro
    CONDENSED MATTER, 2020, 5 (01):
  • [5] Quantum search with a continuous-time quantum walk in momentum space
    Delvecchio, Michele
    Groiseau, Caspar
    Petiziol, Francesco
    Summy, Gil S.
    Wimberger, Sandro
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (06)
  • [6] Quantum percolation in quasicrystals using continuous-time quantum walk
    Chawla, Prateek
    Ambarish, C. V.
    Chandrashekar, C. M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (12):
  • [7] Continuous-time quantum search on balanced trees
    Philipp, Pascal
    Tarrataca, Luis
    Boettcher, Stefan
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [9] Walking on vertices and edges by continuous-time quantum walk
    Cauê F. Teixeira da Silva
    Daniel Posner
    Renato Portugal
    Quantum Information Processing, 22
  • [10] Walking on Vertices and Edges by Continuous-Time Quantum Walk
    da Silva, F. Cauê Teixeira
    Posner, Daniel
    Portugal, Renato
    arXiv, 2022,