Kernel Density Estimates in a Non-standard Situation

被引:0
|
作者
Arup Bose
Madhuchhanda Bhattacharjee
机构
[1] Indian Statistical Institute,Stat
[2] University of Hyderabad,Math Unit, Kolkata
关键词
Kernel density estimate; Efron–Stein inequality; Esseen’s lemma; Eigenvalues; Limiting spectral distribution; Wigner matrix; Sample variance covariance matrix; Toeplitz matrix; Box plot; Primary 62G07; Secondary 60F99; 15B52; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
Kernel density estimate is an integral part of the statistical tool box. It has been widely studied and is very well understood in situations where the observations {xi}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_i\}$$\end{document} are i.i.d., or is a stationary process with some weak dependence. However, there are situations where these conditions do not hold. For instance, while the eigenvalue distribution of large-dimensional random matrices converges, the eigenvalues themselves are highly correlated for most common random matrix models. Suppose {Fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_n\}$$\end{document} is a sequence of empirical distribution functions (usually random) which converges weakly to a non-random distribution function F with density f in some probabilistic sense. We show that under mild conditions on the kernel K and the limit density f, the kernel density estimate f^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{f}$$\end{document} based on Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} converges to f in suitable probabilistic senses. This demonstrates the robustness of the kernel density estimate. We show how the rate of convergence of f^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{f}$$\end{document} to f can be linked to the rate of convergence of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} and E(Fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{E}}(F_n)$$\end{document} to F. Using the above general results, we establish the consistency of the kernel density estimates, including upper bounds on the rate of convergence, for two popular random matrix models. We also provide a few simulations to demonstrate these results and conclude with a few open questions.
引用
收藏
相关论文
共 50 条
  • [1] Kernel Density Estimates in a Non-standard Situation
    Bose, Arup
    Bhattacharjee, Madhuchhanda
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (01)
  • [2] Proving consistency of non-standard kernel estimators
    Mason D.M.
    Statistical Inference for Stochastic Processes, 2012, 15 (2) : 151 - 176
  • [3] Detection of non-standard situation in smart water metering
    Kainz, Ondrej
    Karpiel, Eduard
    Petija, Rastislav
    Michalko, Miroslav
    Jakab, Frantisek
    2019 IEEE 15TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS (INFORMATICS 2019), 2019, : 71 - 76
  • [4] On the buckling design of tubular piles - A non-standard situation
    Hübner, Anton
    Saal, Helmut
    Stahlbau, 2006, 75 (09) : 717 - 722
  • [5] Non-standard situation detection in smart water metering
    Kainz, O.
    Karpiel, E.
    Petija, R.
    Michalko, M.
    Jakab, F.
    OPEN COMPUTER SCIENCE, 2021, 11 (01) : 12 - 21
  • [6] ELLIPTIC INTERPOLATION ESTIMATES FOR NON-STANDARD GROWTH OPERATORS
    Baroni, Paolo
    Habermann, Jens
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 119 - 162
  • [7] SOLVING NON-STANDARD TASKS AS AN EDUCATIONAL SITUATION IN MATHEMATICS EDUCATION
    Skultety, Marek
    EDULEARN19: 11TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2019, : 4154 - 4161
  • [8] NON-STANDARD INTERACTIONS, DENSITY MATRIX AND NEUTRINO OSCILLATIONS
    Szafron, Robert
    Zralek, Marek
    ACTA PHYSICA POLONICA B, 2011, 42 (11): : 2501 - 2508
  • [9] Density Deconvolution in a Non-standard Case of Heteroscedastic Noises
    Cao Xuan Phuong
    Le Thi Hong Thuy
    Journal of Statistical Theory and Practice, 2020, 14
  • [10] Design of wind turbines for non-standard air density
    Soraperra, Giusepe
    WIND ENGINEERING, 2005, 29 (02) : 115 - 128