We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ‘‘chronologically add Brownian loops’’ to simple curves in the plane.
机构:
Fudan Univ, Sch Math Sci, Shanghai, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai, Peoples R China
Aidekon, Elie
Berestycki, Nathanael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Vienna, Austria
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaFudan Univ, Sch Math Sci, Shanghai, Peoples R China
Berestycki, Nathanael
Jego, Antoine
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, EPFL, SB MATH RGM, Lausanne, SwitzerlandFudan Univ, Sch Math Sci, Shanghai, Peoples R China
Jego, Antoine
Lupu, Titus
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Lab Probabil Stat & Modelisat, Paris, France
Univ Paris Cite, CNRS, Paris, FranceFudan Univ, Sch Math Sci, Shanghai, Peoples R China