Isoperiodic families of Poncelet polygons inscribed in a circle and circumscribed about conics from a confocal pencil

被引:0
|
作者
Dragovic, Vladimir [1 ,3 ]
Radnovic, Milena [2 ,3 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Univ Sydney, Sch Math & Stat, Camperdown, Australia
[3] Math Inst SANU, Belgrade, Serbia
基金
澳大利亚研究理事会;
关键词
Poncelet polygons; Elliptic curves; Cayley-type conditions; Isoperiodic confocal families; Painlev & eacute; VI equations; Okamoto transformations; INTEGRABLE BILLIARDS; THEOREM;
D O I
10.1007/s10711-024-00929-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Poncelet polygons inscribed in a circle and circumscribed about conics from a confocal family naturally arise in the analysis of the numerical range and Blaschke products. We examine the behaviour of such polygons when the inscribed conic varies through a confocal pencil and discover cases when each conic from the confocal family is inscribed in an n-polygon, which is inscribed in the circle, with the same n. Complete geometric characterization of such cases for n is an element of{4,6}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \{4,6\}$$\end{document} is given and proved that this cannot happen for other values of n. We establish a relationship of such families of Poncelet quadrangles and hexagons to solutions of a Painlev & eacute; VI equation.
引用
收藏
页数:23
相关论文
共 2 条