Markov random field based fusion for supervised and semi-supervised multi-modal image classification

被引:0
|
作者
Liang Xie
Peng Pan
Yansheng Lu
机构
[1] Huazhong University of Science and Technology,School of Computer Science and Technology
来源
关键词
Multi-modal classification; Image classification; Semi-supervised learning; Markov random field;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, there has been a massive explosion of multimedia content on the web, multi-modal examples such as images associated with tags can be easily accessed from social website such as Flickr. In this paper, we consider two classification tasks: supervised and semi-supervised multi-modal image classification, to take advantage of the increasing multi-modal examples on the web. We first propose a Markov random field (MRF) based fusion method: discriminative probabilistic graphical fusion (DPGF) for the supervised multi-modal image classification, which can make use of the associated tags to enhance the classification performance. Based on DPGF, we then propose a three-step learning procedure: DPGF+RLS+SVM, for the semi-supervised multi-modal image classification, which uses both the labeled and unlabeled examples for training. Experimental results on two datasets: PASCAL VOC’07 and MIR Flickr, show that our methods can well exploit the multi-modal data and unlabeled examples, and they also outperform previous state-of-the-art methods in both two multi-modal image classification. Finally we consider the weakly supervised condition where class labels are from image tags which are noisy. Our semi-supervised approach also improves the classification performance in this case.
引用
收藏
页码:613 / 634
页数:21
相关论文
共 50 条
  • [1] Markov random field based fusion for supervised and semi-supervised multi-modal image classification
    Xie, Liang
    Pan, Peng
    Lu, Yansheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (02) : 613 - 634
  • [2] Multi-Modal Curriculum Learning for Semi-Supervised Image Classification
    Gong, Chen
    Tao, Dacheng
    Maybank, Stephen J.
    Liu, Wei
    Kang, Guoliang
    Yang, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3249 - 3260
  • [3] Semi-supervised image clustering with multi-modal information
    Jianqing Liang
    Yahong Han
    Qinghua Hu
    Multimedia Systems, 2016, 22 : 149 - 160
  • [4] Semi-supervised image clustering with multi-modal information
    Liang, Jianqing
    Han, Yahong
    Hu, Qinghua
    MULTIMEDIA SYSTEMS, 2016, 22 (02) : 149 - 160
  • [5] Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities
    Yang, Yang
    Zhan, De-Chuan
    Wu, Yi-Feng
    Liu, Zhi-Bin
    Xiong, Hui
    Jiang, Yuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (02) : 682 - 695
  • [6] Comprehensive Semi-Supervised Multi-Modal Learning
    Yang, Yang
    Wang, Ke-Tao
    Zhan, De-Chuan
    Xiong, Hui
    Jiang, Yuan
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4092 - 4098
  • [7] Semi-supervised multi-modal medical image segmentation with unified translation
    Sun H.
    Wei J.
    Yuan W.
    Li R.
    Computers in Biology and Medicine, 2024, 176
  • [8] SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A MARKOV RANDOM FIELD AND SPARSE MULTINOMIAL LOGISTIC REGRESSION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2119 - +
  • [9] SEMI-SUPERVISED DISCRIMINATIVE RANDOM FIELD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [10] Semi-Supervised Multi-Modal Learning with Incomplete Modalities
    Yang, Yang
    Zhan, De-Chuan
    Sheng, Xiang-Rong
    Jiang, Yuan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2998 - 3004