Kähler structures on spaces of framed curves

被引:0
|
作者
Tom Needham
机构
[1] The Ohio State University,Department of Mathematics
来源
关键词
Infinite-dimensional symplectic geometry; Elastic shape analysis; Symplectic reduction;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} of Euclidean similarity classes of framed loops in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. Framed loop space is shown to be an infinite-dimensional Kähler manifold by identifying it with a complex Grassmannian. We show that the space of isometrically immersed loops studied by Millson and Zombro is realized as the symplectic reduction of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} by the action of the based loop group of the circle, giving a smooth version of a result of Hausmann and Knutson on polygon space. The identification with a Grassmannian allows us to describe the geodesics of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} explicitly. Using this description, we show that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} and its quotient by the reparameterization group are nonnegatively curved. We also show that the planar loop space studied by Younes, Michor, Shah and Mumford in the context of computer vision embeds in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} as a totally geodesic, Lagrangian submanifold. The action of the reparameterization group on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} is shown to be Hamiltonian, and this is used to characterize the critical points of the weighted total twist functional.
引用
收藏
页码:123 / 153
页数:30
相关论文
共 50 条
  • [1] Kahler structures on spaces of framed curves
    Needham, Tom
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (01) : 123 - 153
  • [2] Invariant affinor and sub-Kähler structures on homogeneous spaces
    E. S. Kornev
    Ya. V. Slavolyubova
    Siberian Mathematical Journal, 2016, 57 : 51 - 63
  • [3] Totally geodesic immersions of Kähler manifolds and Kähler Frenet curves
    Sadahiro Maeda
    Hiromasa Tanabe
    Mathematische Zeitschrift, 2006, 252 : 787 - 795
  • [4] Kähler Geometry of Framed Quiver Moduli and Machine Learning
    George Jeffreys
    Siu-Cheong Lau
    Foundations of Computational Mathematics, 2023, 23 : 1899 - 1957
  • [5] Kähler geometry of Douady spaces
    Reynir Axelsson
    Georg Schumacher
    manuscripta mathematica, 2006, 121 : 277 - 291
  • [6] Nearly Kähler and Hermitian f-structures on homogeneous k-symmetric spaces
    V. V. Balashchenko
    A. S. Samsonov
    Doklady Mathematics, 2010, 81 : 386 - 389
  • [7] Kähler structure on Hurwitz spaces
    Reynir Axelsson
    Indranil Biswas
    Georg Schumacher
    Manuscripta Mathematica, 2015, 147 : 63 - 79
  • [8] Homogeneous Quaternionic Kähler Structures on Eight-Dimensional Non-Compact Quaternion-Kähler Symmetric Spaces
    M. Castrillón López
    P. M. Gadea
    J. A. Oubiña
    Mathematical Physics, Analysis and Geometry, 2009, 12 : 47 - 74
  • [9] Pseudoholomorphic Curves on Nearly Kähler Manifolds
    Misha Verbitsky
    Communications in Mathematical Physics, 2013, 324 : 173 - 177
  • [10] Nearly Kähler and Hermitian f-structures on homogeneous Φ-spaces of order k with special metrics
    A. S. Samsonov
    Siberian Mathematical Journal, 2011, 52 : 1092 - 1103