Homogeneous expansions of normalized biholomorphic convex mappings overBP

被引:0
|
作者
Taishun Liu
Wenjun Zhang
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] Shenzhen University,Department of Mathematics
来源
关键词
biholomorphic convex mappings; Reinhardt domains; Schwarz-type lemma;
D O I
暂无
中图分类号
学科分类号
摘要
The power series expansions of normalized biholomorphic convex mappings on the Reinhardt domain\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$B^p = \left\{ z \right. \in \mathbb{C}^n :\left\| { z } \right\| _p = [\mathop \sum \limits_{j = 1} \left| {Z_j } \right| ^p ]^{1/p}< 1\} (p > 2 )$$ \end{document} are studied. It is proved that the first (k+1) terms of the expansions of the jth componentf j of such a mapf depend only onzj, for 1 ⩽j⩽n, wherek is the natural number that satisfiesk < ρ ⩽k +I. Whenp→ ∞, this gives the result on the unit polydisc obtained by Suffridge in 1970.
引用
收藏
页码:799 / 806
页数:7
相关论文
共 50 条