Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem

被引:0
|
作者
El-Sayed M. E. Mostafa
Mohamed A. Tawhid
Eman R. Elwan
机构
[1] Alexandria University,Department of Mathematics and Computer Science, Faculty of Science
[2] Thompson Rivers University,Department of Mathematics and Statistics, Faculty of Science
[3] Alexandria University,Department of Mathematics, Faculty of Education
来源
关键词
The pole assignment problem; Output feedback control; Nonlinear programming; 49N35; 49N10; 93D52; 93D22; 65K05;
D O I
暂无
中图分类号
学科分类号
摘要
The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and BD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BD$$\end{document}-regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.
引用
收藏
页码:517 / 542
页数:25
相关论文
共 50 条
  • [1] Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem
    Mostafa, El-Sayed M. E.
    Tawhid, Mohamed A.
    Elwan, Eman R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (03): : 517 - 542
  • [2] A Quasi-Newton Optimal Method for the Global Linearisation of the Output Feedback Pole Assignment
    Leventides, John
    Meintanis, Ioannis
    Karcanias, Nicos
    2014 22ND MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2014, : 157 - 163
  • [4] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [5] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [6] The inexact, inexact perturbed, and quasi-Newton methods are equivalent models
    Catinas, E
    MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 291 - 301
  • [7] On quasi-Newton methods with modified quasi-Newton equation
    Xiao, Wei
    Sun, Fengjian
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 359 - 363
  • [8] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    Annals of Operations Research, 2001, 103 : 213 - 234
  • [9] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [10] Inexact Quasi-Newton methods for sparse systems of nonlinear equations
    Bergamaschi, L
    Moret, I
    Zilli, G
    FUTURE GENERATION COMPUTER SYSTEMS, 2001, 18 (01) : 41 - 53