Self-adaptive iterative method for solving boundedly Lipschitz continuous and strongly monotone variational inequalities

被引:0
|
作者
Songnian He
Lili Liu
Aviv Gibali
机构
[1] Civil Aviation University of China,Tianjin Key Laboratory for Advanced Signal Processing
[2] Civil Aviation University of China,College of Science
[3] ORT Braude College,Department of Mathematics
[4] University of Haifa,The Center for Mathematics and Scientific Computation
关键词
Variational inequalities; Self-adaptive iterative methods; Boundedly Lipschitz continuous; Strongly monotone; 47J20; 90C25; 90C30; 90C52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a new self-adaptive iterative algorithm for solving the variational inequalities in real Hilbert spaces, denoted by VI(C,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{VI}(C, F)$\end{document}. Here C⊆H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\subseteq \mathcal{H}$\end{document} is a nonempty, closed and convex set and F:C→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F: C\rightarrow \mathcal{H}$\end{document} is boundedly Lipschitz continuous (i.e., Lipschitz continuous on any bounded subset of C) and strongly monotone operator. One of the advantages of our algorithm is that it does not require the knowledge of the Lipschitz constant of F on any bounded subset of C or the strong monotonicity coefficient a priori. Moreover, the proposed self-adaptive step size rule only adds a small amount of computational effort and hence guarantees fast convergence rate. Strong convergence of the method is proved and a posteriori error estimate of the convergence rate is obtained.
引用
收藏
相关论文
共 50 条