An OpenCL micro-benchmark suite for GPUs and CPUs

被引:0
|
作者
Xin Yan
Xiaohua Shi
Lina Wang
Haiyan Yang
机构
[1] Beihang University,State Key Laboratory of Software Development Environment, School of Computer Science and Engineering
来源
关键词
Micro benchmark; OpenCL; GPU; Multi-core CPU;
D O I
暂无
中图分类号
学科分类号
摘要
Open computing language (OpenCL) is a new industry standard for task-parallel and data-parallel heterogeneous computing on a variety of modern CPUs, GPUs, DSPs, and other microprocessor designs. OpenCL is vendor independent and hence not specialized for any particular compute device. To develop efficient OpenCL applications for the particular platform, we still need a more profound understanding of architecture features on the OpenCL model and computing devices. For this purpose, we design and implement an OpenCL micro-benchmark suite for GPUs and CPUs. In this paper, we introduce the implementations of our OpenCL micro benchmarks, and present the measuring results of hardware and software features like performance of mathematical operations, bus bandwidths, memory architectures, branch synchronizations and scalability, etc., on two multi-core CPUs, i.e. AMD Athlon II X2 250 and Intel Pentium Dual-Core E5400, and two different GPUs, i.e. NVIDIA GeForce GTX 460se and AMD Radeon HD 6850. We also compared the measuring results with existing benchmarks to demonstrate the reasonableness and correctness of our benchmark suite.
引用
收藏
页码:693 / 713
页数:20
相关论文
共 50 条
  • [1] An OpenCL micro-benchmark suite for GPUs and CPUs
    Yan, Xin
    Shi, Xiaohua
    Wang, Lina
    Yang, Haiyan
    JOURNAL OF SUPERCOMPUTING, 2014, 69 (02): : 693 - 713
  • [2] An OpenCL Micro-Benchmark Suite for GPUs and CPUs
    Yan, Xin
    Shi, Xiaohua
    Sun, Qingyue
    2012 13TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS, AND TECHNOLOGIES (PDCAT 2012), 2012, : 53 - 58
  • [3] A Sparse Tensor Benchmark Suite for CPUs and GPUs
    Li, Jiajia
    Lakshminarasimhan, Mahesh
    Wu, Xiaolong
    Li, Ang
    Olschanowsky, Catherine
    Barker, Kevin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2020), 2020, : 193 - 204
  • [4] lmbench:: an extensible micro-benchmark suite
    Staelin, C
    SOFTWARE-PRACTICE & EXPERIENCE, 2005, 35 (11): : 1079 - 1105
  • [5] A Parallel Sparse Tensor Benchmark Suite on CPUs and GPUs
    Li, Jiajia
    Lakshminarasimhan, Mahesh
    Wu, Xiaolong
    Li, Ang
    Olschanowsky, Catherine
    Barker, Kevin
    PROCEEDINGS OF THE 25TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '20), 2020, : 403 - 404
  • [6] Hopscotch: A Micro-benchmark Suite for Memory Performance Evaluation
    Ahmed, Alif
    Skadron, Kevin
    MEMSYS 2019: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS, 2019, : 167 - 172
  • [7] TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks
    Marowka, Ami
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2012, 8 (02): : 331 - 346
  • [8] A Micro-benchmark Suite for Evaluating HDFS Operations on Modern Clusters
    Islam, Nusrat Sharmin
    Lu, Xiaoyi
    Wasi-ur-Rahman, Md.
    Jose, Jithin
    Panda, Dhabaleswar K.
    SPECIFYING BIG DATA BENCHMARKS, 2014, 8163 : 129 - 147
  • [9] MIBA: A micro-benchmark suite for evaluating InfiniBand architecture implementations
    Chandrasekaran, B
    Wyckoff, P
    Panda, DK
    COMPUTER PERFORMANCE EVALUATION: MODELLING TECHNIQUES AND TOOLS, 2003, 2794 : 29 - 46
  • [10] DataRaceOnAccelerator - A Micro-benchmark Suite for Evaluating Correctness Tools Targeting Accelerators
    Schmitz, Adrian
    Protze, Joachim
    Yu, Lechen
    Schwitanski, Simon
    Mueller, Matthias S.
    EURO-PAR 2019: PARALLEL PROCESSING WORKSHOPS, 2020, 11997 : 245 - 257