On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation

被引:0
|
作者
Tobias Jahnke
Michael Kirn
机构
[1] Institute for Applied and Numerical Mathematics,Karlsruhe Institute of Technology, Department of Mathematics
来源
BIT Numerical Mathematics | 2023年 / 63卷
关键词
Nonlinear Dirac equation; Time integration; Error bounds; Nonrelativistic limit regime; 35Q41; 65M12; 65M15; 81Q05; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
Solving the nonlinear Dirac equation in the nonrelativistic limit regime numerically is difficult, because the solution oscillates in time with frequency of Oε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}} \! \left( \varepsilon ^{-2}\right) $$\end{document}, where 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} is inversely proportional to the speed of light. Yongyong Cai and Yan Wang have shown, however, that such solutions can be approximated up to an error of Oε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}} \! \left( \varepsilon ^2\right) $$\end{document} by solving the semi-nonrelativistic limit system, which is a non-oscillatory problem. For this system, we construct a two-step method, called the explicit exponential midpoint rule, and prove second-order convergence of the semi-discretization in time. Furthermore, we construct a benchmark method based on standard techniques and compare the efficiency of both methods. Numerical experiments show that the new integrator reduces the computational costs per time step to 40% and within a given runtime improves the accuracy significantly.
引用
收藏
相关论文
共 50 条
  • [1] On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation
    Jahnke, Tobias
    Kirn, Michael
    BIT NUMERICAL MATHEMATICS, 2023, 63 (02)
  • [2] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    BAO WeiZhu
    CAI YongYong
    JIA XiaoWei
    YIN Jia
    Science China(Mathematics), 2016, 59 (08) : 1461 - 1494
  • [3] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    Bao WeiZhu
    Cai YongYong
    Jia XiaoWei
    Yin Jia
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1461 - 1494
  • [4] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    WeiZhu Bao
    YongYong Cai
    XiaoWei Jia
    Jia Yin
    Science China Mathematics, 2016, 59 : 1461 - 1494
  • [5] Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime
    Weizhu Bao
    Yongyong Cai
    Xiaowei Jia
    Qinglin Tang
    Journal of Scientific Computing, 2017, 71 : 1094 - 1134
  • [6] Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime
    Bao, Weizhu
    Cai, Yongyong
    Jia, Xiaowei
    Tang, Qinglin
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 1094 - 1134
  • [7] Numerical Methods for the Nonlinear Dirac Equation in the Massless Nonrelativistic Regime
    He, Ying
    Wang, Yan
    Yang, Jerry Zhijian
    Yin, Hongshuang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (01) : 79 - 103
  • [8] Semi-nonrelativistic limit of the Chern-Simons-Higgs system
    Chae, Myeongju
    Huh, Hyungjin
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [9] THE NONRELATIVISTIC LIMIT OF THE NONLINEAR DIRAC-EQUATION
    NAJMAN, B
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01): : 3 - 12
  • [10] UNIFORMLY ACCURATE NUMERICAL SCHEMES FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Lemou, Mohammed
    Mehats, Florian
    Zhao, Xiaofei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 1107 - 1128